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INTRODUCTION AND SUHMARY 

This is the  f i n a l  report  on contract NAS 8-11020 

Trajectory Study". 

n t i t l e d  Wptimum 

In this sect ion we rill t r y  to  g i v e  a verbal account of the problems 

aonsidered, the  reaeon6 f o r  considering them, and t he  main reeulte ob- 

tained. The remaining ~ e c t i o n ~ ,  while having independent introductions,  

w i l l  contain the mathematical analyeia. 

The major objective of this study w a s  t o  examine the use of Hamilton 

Jacobi p a r t i a l  d i f f e r e n t i a l  equations i n  determining f i e l d s  of optimum 

t r a j e c t o r i e s  and t o  study sufficiency conditions. 

of optimal control  problems car, with a s l i g h t  reformulation, be posed as 

t i m e  optimal problems, our a t tent ion is focused throughout on problems of 

Since a great  number 

this type, 

If d v e n  in i t ia l  data,  say time t = to, state x = x f o r  a time 
0 

optimal problem, the reachable set ( i n  Euclidean (n+l)  dimensional time- 

state space) is defined t o  be the set  of a l l  points  ( t ,  x) with time 

t 

of the dynamical system with an admissible control,  

d i t i ons  on the dynamical system equations and the control  se t ,  i t  is 

known that a time optimal point t o  point transfer w i l l  lead t o  a tra- 

)-to and state x such tha t  i t  can be a t ta ined  i n  t i m e  t by a t r a j ec to ry  

Under very mild con- 

jectory which l i e s  on the boundary of t he  reachable set. 

t r a j e c t o r i e s  which l i e  on the  boundary of the reachable set are  excel lent  

Conversely, 

candidates for being time optimal fo r  some point t o  point t ransfer ,  and 

thus conditions which s ingle  them out are of i n t e r e s t ,  

the  boundary of the reachable se t  i f  i n  every neighborhood of i t  there  are 

points  not i n  the reachable s e t ;  i.e., points  not a t ta inable  by t r a j ec to r i e s  

Now a point is on 
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of the  dynamical system. 

cont ro l lab i l i ty .  

This leads one na tura l ly  t o  notions of 

Following the  def in i t ion  of K a l m a n ,  a l i n e a r  system is sa id  t o  be 

completely control lable  a t  time to i f  every atate can be a t ta ined  

(with de 

a rb i t r a ry  init ial  da ta  ( to ,  xO)* 

data  has been chosen so t ha t  the mission is possible. It is of fur ther  

control)  i n  f inite time by a t ra jec tory  of t he  system having 2 
Thus one can examine whether t he  terminal 

i n t e r e s t  t o  define loca l  cont ro l lab i l i ty ,  i.e., a system is loca l ly  con- 

t r o l l a b l e  along a solut ion t ra jec tory  

poin ts  i n  some state space neighborhood of 

t i m e  t by t r a j e c t o r i e s  with admissible controls.  Obviously t r a j e c t o r i e s  

along which a system is loca l ly  control lable  cannot remain on the  boundary 

> to a l l  

P ( t , )  a r e  a t ta inable  i n  

1 f i t )  i f  f o r  some t 

1 

of the  reachable set, and hence this becomes a tes t  for optimality. 

might a l s o  be remarked that w h i l e  f o r  l i n e a r  systems one could expect 

It a 
global  con t ro l l ab i l i t y  r e su l t s ,  for nonlinear systems i t  is na tura l  t o  

expect only loca l  resu l t s .  

I n  Section I ,  the  Kalman c r i t e r ion  fo r  complete con t ro l l ab i l i t y  f o r  a 

l i n e a r  system is derived i n  a s i m p l e  manner (corol lary 1-11 and an ex- 

tension is obtained f o r  a spec ia l  form of nonlinear system (Theorem 1.2). 

I n  Section 11, the  nonlinear system x ( t )  = g ( t ,  x ( t ) )+H( t ,x ( t ) )u ( t ) ,  

x an n vector,  H an nxr matrix, u and r vector valued control with 

15 r - n ,  is studied, If B(t, x> is an (o-rlxn matrix, of maximal ranks 

such tha t  B(t,x)H(t,x) E 0, the local  con t ro l l ab i l i t y  of the above system 

is  shown t o  be closely related t o  the i n t e g r a b i l i t y  of the pfaf f ian  system 

B(t,x)dx - B(t,x) g ( t ,  x )d t  = 0. I n  par t icu lar ,  the above nonlinear 

system is defined t o  be  completely control lable  i f  the  associated pfaf f ian  

system is not integrable ,  Theorem 11-1 then shows t ha t  i n  the special 
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case of a l i n e a r  system9 this defini t ion y i e lds  a c r i t e r i o n  for complete 

con t ro l l ab i l i t y  equivalent t o  that of Kalman. mer new c r i t e r i o n  is use- 
a 

f u l  eince i t  does & depend on the knowledge of a fundamental solut ion 

matrix f o r  a t i m e  varying l i n e a r  system. Its use  is demonetrated by ob- 

ta ining the r e s u l t  t h a t  an n dimensional system, formed from a single n!b 

order l i n e a r  time varying d i f f e ren t i a l  equation of the form x(n ) ( t )  + 

a,(t) x (n-l)(t) + . 
(Here u is a sca l a r  valued control) ,  

the  functions a . ( t >  were constant, 

+ an( t )  x ( t )  = u ( t ) ,  is completely controllable.  

This r e s u l t  was previously known i f  

1 

The remainder of sect ion I1 d e a l s  with l o c a l  con t ro l l ab i l i t y  i n  a 

neighborhood of s ingular  arcs.  It is shorn tha t  l oca l  tests,  which 

depend on examining the cont ro l lab i l i ty  of the var ia t iona l  equation along 

a s ingular  a r c  w i l l  always be non-conclusive. Along an optimal singular 

a r c  the system is t ru ly  not locally control lable ,  however i t  is shorn by 

example (example 11.2) tha t  singular a r c s  can e x i s t  along which the system 

is loca l ly  controllable,  These can be thought of as in f l ec t ion  points i n  

function space, of the functional (time) which is t o  be extremized. They a r e  

analogous t o  in f l ec t ion  points which a r i s e  when extremizing a real valued 

function F on a manifold i n  Euclidean space; i o e o 9  non-extrema1 points  a t  

which the map F induces on the tangent space of the manifold i n t o  the tan- 

gent space of the reals, vanishes. 

These a rc s  are s ingular  also i n  the  sense of the  c l a s s i c a l  calculus of 

var ia t ions,  hence the Hilber t  d i f f e ren t i ab i l i t y  condition f a i l s  t o  hold along 

them, and c la s s i ca l  suff ic iency conditions f a i l .  

In sect ion 111, the  study of feedback control  v i a  the Pontriagin m a x i m u m  

pr inciple  and Hamilton Jacobi theory is begun. Often the feedback control  



which the maximum principle  prescribes, is discontinuous i n  the state 
0 

variables ,  which i n  turn leads to  a Hamilton Jacobi equation with dis- 

continuous coeff ic ients .  

computational viewpoint. 

This is  impractical  both from a theore t ica l  and 

The first pa r t  of sect ion I11 deals  mainly with 

the remon f o r  this discontinuity,  and y ie lds  conditions such that the 

m a x i m  principle  would prescribe a continuous o r  even C1 (once continuously 

d i f fe ren t iab le)  control. Theorems I I I , 4  and 111.5 then show that whenever a 

control  problem merely s a t i s f i e s  the conditions of F i l l ipov  f o r  the  

existence of an optimal control,  there e x i s t s  an approximate problem ( the  

precise  def in i t ion  of this precedes theorem 111.4) f o r  which the m a x i m u m  
I pr inc ip le  gives a C control,  and such t h a t  f o r  any given E =- 0, an 

optimal t ra jec tory  of the or iginal  problem w i l l  be i n  an E neighborhood 

of t h a t  f o r  t he  approximate problem. 

The remainder of sect ion I11 deals  with the Hamilton Jacobi theory f o r  

these smooth approximate problems, and f o r  the special  case of the control  

appearing l i nea r ly ,  an easy construction f o r  the approximating problem is 

shown, while an example (example I I Iol)  is worked out i n  d e t a i l  t o  

demonstrate the r e s u l t s ,  

Two se t s  of references are given, the first fo r  sect ions I and 11, the  

second for sect ion 111. 
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COIITROLLABILI!PY AM) THE SINGULAR PROBLEH 

INTRODUCTIOB TO SECTIONS I AND I1 

The concept of 

introduced by R, E, 

paper to  extend the 

complete cont ro l lab i l i ty  of l i n e a r  systems w a s  

Kalman [ 11. It i s  par t  of the purpose of t h i s  

concept t o  nonlinear systems, with control appear- 

ing  l inear ly .  A l l  systems considered are of t h i s  form. 

Geometrically, a l i nea r  system is completely controllable at time 

t 

system having a rb i t r a ry  i n i t i a l  d a t a  x 

the extension of t h i s  concept t o  nonlinear systems came largely from 

r e s u l t s  obtained i n  [2] and from the geometric in te rpre ta t ion  of non- 

if  any-state can be at ta ined i n  f i n i t e  t i m e  by a t ra jec tory  of the 
0 

at time t The motivation f o r  
0 0 

i n t eg rab i l i t y  of pfaffians given i n  [3] and [4]. I n  par t icu lar ,  C a r a -  

theodory gives an argument to  show tha t  i f ,  f o r  a single pfaff ian equation, 

there are points in every neighborhood of a given point which are not 

"reachable" from the given point by curves sa t i s fy ing  the equation, the 

equation is integrable. This resu l t  w a s  generalized t o  systems of 

pfaff ians  i n  [ 41. There is a d i f f i cu l ty  i n  applying these ideas t o  

pfaff ian systems which are quite na tu ra l ly  associated with control systems 

having control appearing l inearly,  (See 3 11,) 

usually the independent variable t appears e x p l i c i t l y  i n  the pfaff ian 

The reason f o r  t h i s  i s  t h a t  

system, hence i t s  in tegra l  c u r v e s ,  which can be re la ted  back t o  solut ions 

of the control system, and are used t o  connect neighboring points t o  a 
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given point,  must hare t parametrized aa t(6), a monotone funotion of 6 

This is the case i n  the proofs i n  3 and 4 , and with this restriction, c 3  [ I  
in general the r e s u l t s  of these papers are no longer valid. 

The r e l a t ion  between singular problems aad aon t ro l l ab i l i t y  arises 

qui te  n a b a l l y  from the pfaffian approach and can be anticipated from 

r e s u l t s  obtained by L a S a l l e  i n  [ 5 ] .  In 3 I1 we define the concept of a 

t o t a l l y  singular are, i o e o e  an arc satisfying the d i f f e ren t i a l  constraining 

equations, for which there  ex is t s  an adjoint vector such tha t  the ~psxirmua 

pr inciple  y ie lds  no information 88 t o  the optimality of ang of the com- 

ponents of the control along th i s  a rco  In par t icu lar ,  if the system 

were l inea r  and admitted no t o t a l l y  singular a r c ,  t he  system would be 

proper in  the sense of L a S a l l e  [ 5 ]  and completely controllable i n  the 

sense of Kalman [ 6 ] .  Even i f  the controls are merely r e s t r i c t ed  t o  be 

g2 (Lebesgue square integrable) functions, it is shown tha t  t o t a l l y  singu- 

lar arcs  can exis.9; and comprise some or a l l  of the boundary of the a t ta in-  

able s e t ,  thereby being optimal t r a j ec to r i e s  f o r  cer ta in  t i m e  opti.mil 

control problems, These are a l s o  precisely the a rcs  along which the system 

need not be loca l ly  controllable,  i o e O p  i f  w e  assume i n i t i a l  da ta  x given 

at  time tos there 

point pv(tl) of a t o t a l l y  singular a m  (pvp which are not a t ta inable  in 

t i m e  tl > to by t r a j ec to r i e s  of the system with% controls. Here lp' 

denotes the solut ion of the system with control vo 

0 

exist points in every state space neighborhood of a 

Precisely,  if f o r  every 

t l>  to there e x i s t  points i n  every state space neighborhood of pv( tl) 9 
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which are not a t ta inable  with g2 control in time tl, the a rc  V v i a  t o t a l l y  

singular. However it is shown by example t h a t  there  do e x i s t  t o t a l l y  

s ingular  arcs about which the system is loca l ly  controllable.  

I. COMPLETE CONTROLLABILITY FOR LINEAR AND MILDLY NONLIWEBB SYSTEMS 

Throughout t h i s  section H w i l l  denote an nxr matrix valued function 

of t, which is i n  g2 [to# t,] fo r  any given f i n i t e  tl > t 
w i l l  be g2, vector valued functions, We begin with the following basic 

Lemma. 

Controls 
0. 

Lemma I,1 A necessary and suf f ic ien t  condition tha t  there e x i s t  an 

rxn matrix valued function V(t) i n  g2 [to, tl j , such that for some 

0 
H(T)V(T)dT i s  non-singular, i s  tha t  f o r  some tl > t il> to, It' 

necessity assume there ex i s t  V,  t l i t  0 ,such tha t  lt1 H ( 7  > v ( 7  ) d 7  1s 

0 
t 

[' H ( T ) H T  ( 7 ) d  7 i s  non-singular, 

0 

- Proof Sufficiency is immediate by choosing V ( 7 )  = HT(T)* To show 

- 
0 

non-singular, but 

par t icu lar  t = t l "  

H( 7 ) H T (  7 )d'c is singular  €or a l l  'i: > to, i n  

This implies there e x i s t s  a constant vector c.f 0 
- 1 

such tha t  c (i,' H( r ) H T (  7' )67) cT= 0, and since H( 7' )H T (7)  i s  posi t ive 

. -0 
semi-definite, we obtain c H ( t )  = 0 almost everywhere i n  [to# t l ]  Thus 
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H(r)V(r)dr = 0 which contradicts the non-singularity of 
0 

[l H(T)V(7)d7. I 
0 

We next oonsider the eystem 

Define 

Theorem 1.1 

to be completely controllable at to is that there exists tl > t  

that M(to, tl) is non-singular, 

A necessary and sufficient condition for the system (1-1) 

such 
0 

- Roofr (Sufficiency) Let x be any given point in e, Euclidean n 
space. We w i l l  show - x is attainable from x at time tlo Indeed pick 

0 

(Wecessity). Assume M(to9 tl) is singular for all tl >too T h i s  

implies (see proof of lema Iol) that there exists a constant vector 

c 4 0 such that c H(t) 
that c o xo We will show the point c is not attainable from xoo 

Indeed suppose for some u and t c = xo +it’ H(T)u(T)dr . Then 

0 pepo Since x is arbitrary, let it be such 
0 

0. 

0 
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c u l lal12 c Q x + c H(7)u(r )dr  = 0, a contradiotion to 
0 

0 

the fact that c d  0. 1 

Corollary I,1 (galman) The linear system 

(1-2) ;(t) A(t)x(t) + H(t)u(t) , '(to> = xo 

is completely controllable at t if and only if 
0 

Here 5 (tor) denotes a fundamental solution of the homogeneous system 
;(t) = A(t) X(t). 

- Proofs Make the transformation y(t) I 9 O1(t ~ to) x(t). Then x 

satisfies (1-2) if an only if y satisfies 

(1-9 i(t> = $ (t,,t> H(t)&), Ato) = xoe 

(Note @ (to' t) = 4 -'(t, to).) From the transformation, it 

follows that the system (1-2) is completely controllable if and only if 

the system (1-3) is completely controllable, i.ec, from theorem Iol that 

there existe a tl> to such that 
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Some s D e c i a l  results for nonlinear systems 

We next oonsider the nonlinear system 

continuous aa a function of t f o r  each I. 
P t ,  

Theorem 102 

by t r a j ec to r i e s  of the system (1-4) with g2 control be a l l  of 'e is 
t h a t  M ( t o 9  tl) be non-singular fo r  some tl> t 

Remark 

A suf f ic ien t  oondition tha t  the set of points  attainable 

O0 

Rather than s t a t e  the theorem i n  t h i s  mamier, one might con- 

s ide r  merely saying that the system (1-4) is  conpletely controllable at 

However, t h i s  notion has not been defined for nonlinear systems, and 

it does not seea reasonable t o  this author t o  define it in such a global 

fashion f o r  these systems. 

Proof 

s a t i s f  i e e  

For a rb i t r a ry  u9 (1-4) has a solut ion designated @which 

t . 

Let T be any given point i n  e, We desire a control such that f o r  some 

point f i n i t e  tl> t (pu(tl) = 3. It suf f ices  t o  consider controls which 
0 9  
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came from a f i n i t e  dimensional subspace Of x2, i n  par t iuular  the csontrols 

considered w i l l  be of the form u ( t )  =, HT(t)[ where ( 
no tat ion $ ra ther  than cp" w i l l  be used. 

8. Hence the 

Define a mapping 5 8  e-8 as follows; 

a;( 1) M o l (  to, tl) [ - D( ( [  ) - x, ] . From (1-5) it follows that 
l - 

a f ixed point of T w i l l  y ie ld  a value such that 'p ( tl) = I. 

It is  w e l l  known t ha t  with the conditions imposed on g [ 7 ,  th. 7.4 - 
Chapter I ]  , &is a continuous function of [ i n  the topology C[ to ,  tl], 

i.e., the topologg induced by the supremum norm. 

function of 5 ,  and F i e  a continuous function of [ 
Thus a(() is a continuous 

We next show that there ex i s t s  a K such that l l lII 5 K-ll&[)ll 5 Ka 

L e t t i n g  K 

f o r  any 

{[ 6 $8 11 [ 11 5 K] continuously in to  i t s e l f .  Thus %has a fixed point, 8 
Remark 

theorem (I,') and the boundedneee condition on the vector go 

condition M ( t o ,  tl) non-singular f o r  some tl> t 

11 M - l ( t o ,  tl)(/ [ 11 'I /I+ nM(tl - to) + IIxo 111 , it follows that 

, 11F(( ) 11 5 K, hence i n  par t icu lar  g m a p s  the b a l l  

The re su l t  obtained i n  t h i s  theorem i s  not surpris ing i n  view of 

Also the 

i s  mch  stronger than 
0 
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it need be. 

and H ( t )  is a oolumn veator w i t h  one component zero, then #(to,tl) is 

siqular for all t12 to, yet  the system can cer ta in ly  be completely 

controllable. 

For example, i f  w e  consider a l inear  system of the form (1-2) 

2 XI. IiTONLIIGAR SYSTEXS W I T H  LINEAE COloTROL: THE SINGULAR PROBI;FM 

In t h i s  seation, we consider extending the notion of complete con- 

t r o l l a b i l i t y  t o  systems of the form 

where g is an n-vector, H an nxr matrix, while u is an & control vector. 

It is  assumed tha t  g and H are C' i n  a l l  arguments. Throughout, the 

s t i pu la t ion  1< - r < n  is required t o  hold. 

1 L e t  B ( t ,  I) be a C , (n-r)xn matrix w i t h  rank (n-rank H) a% each 

point (t, x)  i n  some domain&, of i n t e re s t ,  such tha t  

(2-2) B(t,x) H ( t ,  x ) s  0 , (t, x) € A* 

Since r C n, w e  know tha t  rank B 2 1 for a l l  (t, x). 

With the system (2-l),, associate the pfaff ian system 

(2-3) B ( t ,  x)& 0 B ( t ,  X) g(t, x)dt  = 0. 

L e t  b be an a rb i t r a ry  l inear combination of the rows by of B, 
1 taken w i t h  C sca la r  valued coeff ic ients  o( ( t ,  x), i o e o g  U 
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denote such a linear 

U x) b (t, I). Throu@dnout, b w i l l  be used to 

combination which is & ident ica l ly  zero. 

Definit ion 11.1 

(z, I) if there e x i s t s  a C1 scalar valued function u((t, x) and an 

The pfaff ian system (2-3) i s  integrable at the  point 
- 

> 0 such that f o r  some b, 

Essent ia l ly  t h i s  states that  for some b, 

(2-4) b( t ,  X ) ~ X  - b ( t ,  X)  g(t, x)dt  

- -  
is an exact d i f f e ren t i a l  i n  a "neighborhood'' of (t, x). 

noted that  any in tegra t ing  fac tor  can be included i n  the coeff ic ients  

of the l i nea r  combination of the rows b e 

It should be 

U 

The notion of in tegrabi l i ty  of a pfaff ian system is, of course, 

related t o  the property of contpletencess of an associated system of p a r t i a l  

d i f f e ren t i a l  equations. 

s~looah (n-r>sr matrix, and K(x) a smooth nxr matrix, both of maximum 

rank, such tha t  C(x)K(x)r 0. 

To show the re la t ion ,  l e t  C(x), x be a 

With the  pfaff ian system 

(2-4) c(x)dx = 0 

T E l x ) = O .  
a x  

we associate the system of p a r t i a l  d i f f e r e n t i a l  equations K (x) 
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i T Eaoh row k of K can be considered as defining a vector f i e l d  Xi which 

l o c d l y  generates a one parameter s e m i  group of diffeomorphisas, [Ti( t ) ]  9 

see f o r  example [ 8 ,  p. lo]. In turn, such a s e a  ; p u p  determines a 

vector f ie ld .  If f o r  eaoh i, j = 1, 2, ..., r and for a l l  a r b i t r a r i l y  
\ 

s m a l l  f ixed 7, the vector f i e l d  determined by { T j ( 7 )  Ti(t )  Tj(-T)J 
i is l inear ly  dependent on the f i e lds  X , the system of partial d i f f e ren t i a l  

equations is said t o  be complete. 

l inear ly  independent f i e l d s  formed i n  this manaer is called the index of 

both the pfaffian system and the associated pa r t i a l  d i f f e ren t i a l  equation 

sptem [ 41. 

If it is  not complete, the number m of 

From the  results i n  j4], i t  eas i ly  follows tha t  the Dfaffian system 

J2-k) i a  i n t e n a b l e  (def ini t ion 11.1) i f  and only i f  the index ~i is  such 

tha t  m-tr <no If the index m i e  such tha t  m+r o n, Chaw [4] shows tha t  

there i s  a neighborhood of a point xoc 

neighborhood are a t ta inable  by curves sa t i s fy ing  (2-5). From the view- 

point of local aont ro l lab i l l ty  for a control system, w e  can in te rpre t  t h i s  

as follows. If the pfaffian system associated with the control system 

such tha t  a l l  points i n  t h i s  

has index m. where K is a continuous nxr matrix function of x 

w i t h  constant rank r, and m + r  = n. then every point in some neiahborhood 

- of x 

Indeed, since a l l  points i n  some neighborhood of x 

En 

is at ta inable  by t ra jeotor ies  of (2-5) with measurable controls. 

are a t ta inable  by 
0 
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absolutely continuous curves satisfying C(x,(t)) ;(t) 0 almost every- 

where, we must only show that such a curve also satisfiea (2-5) for some 

control U. But C(x(t)) ;(t) = 0,,5*-;(t) is a linear combination of the 

columna of K(x(t)), since CK = 0. 
;(t) = K(x(t))u(t) for almost all t. 

Thus there exists n(t) such that 

Since K has rank r, it has a oon- 

tinnous left inverse on its range, from which it follows that u is 

measurable. 

Before stating an explicit criterion for complete controllability of 

a system of the form (2-1) one may askt 

definition to yield? Since 

the definition should extend that given for  a linear system of the form 

(1-2) which is a special case of (2-1), one expectet 

What should one expect the 

This can presently be answered as follows. 

a) If g(t, x) A(t)x, H(t, x) 5 H(t), then the criterion which 

defines complete controllability at to for (11.1) should be 

equivalent with the condition $ (to, t)H(t)HT(t) pT(t0, t)dt c1 0 

non-singular for some tl > to, as given in corollary 1.1. 
There should be a geometric interpretation of the condition, b) 

e.g., vhat points are attainable from the initial point in finite 

time? In the linear system there were global attainability 

results, i.e., any point could be attained from the initial 

point via a trajectory of the system. In the nonlinear problem, 

one would expect at most local results of this nature. 
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The approaoh will be to state a criterion for complete control- 

We then use this lability of (2-1) which we will show satisfies a). 

criterion to try to establish a geometrio interpretation as mentioned 

in b). 

be extended is somevhat a matter of personal opinion. 

Definition 11.2 

Of oourse, has the definition of complete controllability should 

The system (2-1) is completely controllable at 
- -  
(t, I) €4 if the associated pfaffian system (2-2) is not integrable at 

It will next be shown that this criterion is equivalent to the con- 

dition given in corollary 1.1 for the speoial case of the linear system 

(1-2). 

syetem equivalent to (2-3). 

row8 of B to form the single pfaffian aa in (2-4), we can consider the 

scalar Functions d Indeed we must only show 

that if the pfaffian form 

In this case it suffioes to take B B(t) in fonning the pfaffian 

Also, in taking the linear combination of the 

as function of only t. u 

( 2-6 1 b(t)b - b(t) A(t)x dt  

has an integrating factor, then this integrating factor, denoted by/, 

can be taken aa a function of only t. To obtain this, suppose p(t, x) 

is such that/Z(t, x) b(t)dx -p-(t, x)b(t)A(t)x dt is an exact 

i 
Definep(t) =F (t, 0), noting that for 

differential. bi -Ex bj= 0 for all i, j = 1, 2, ..., n, and 
. - Then px, 

A b  +jb = -h b A x  -,+!.(b A. 
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the  l i n e a r  system 4 = (to, m) x E? whiuh implies ( t ,  0) 48 for t > to. 

It fol lows tha t  /( (t) is also an integrating factor.  

Since it is su f f i c i en t  t o  consider b o t h l a n d  t h e 4  as functions of 

only t, there i s  no lo s s  of general i ty  i n  considering tha t  i f  the pfaff ian 

sys tem 

U 

(2-7) B(t)dx - B ( t )  A(t)x dt  = 0 

assouiated with (1-2) i s  integrable, then (2-6) i s  an exaut d i f fe ren t ia l .  

Since x appears l inear ly ,  def ini t ion 11.1 simplif ies  for suoh systems, 

lphe ufaf'fian system (2-7) is internable  at the point T i f  there and is: 

e x i s t s  a C 

same b, 

1 sca l a r  valued function v ( t ,  x) and an 0 such tha t  f o r  

a 
u/,(t, 4 = b ( t ) ,  u/,(t, 4 = -b( t )  A ( t h  

for T 5 t <T + 6 . 
and Ytx ex i s t  and are  equal). 

(Hotel Under the assumptions on B and H, U/It 

Define t L. 

Then corollary 1.1 s t a t e s  t ha t  the system (1-2) is completely control lable  

at to i f  and only if there ex is t s  a t l> to such tha t  W ( t o ,  tl) is  non- 

singular. 

Remark 1. I f  A and H are constant matrices, JCalman [l] shows that this  

condition is  equivalent t o  the condition: rank [A,  AH,... An-$] = n. 
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Remark 2. While the above condition given for the constant coefficient 

case can be directly decked, W(to, tl) depends on knowledge of a 

fundamental solution $(t, to) vhich is 

Remark 3. 

matrix. 

all t 2 t 

alvays easily obtainable. 

It is easily seen that W(to, t ) is a positive semi-definite 1 
n u s  if W(to,tl) is non-singular, W(to, t) is non-singular for 

1' 
The main purpose of this section will be to show that the condition 

11.2 for complete controllability of (1-2) is equivalent to W(to, tl) being 

non-singular for some t > t  

depending on knowledge of a fundamental solution. 

This condition has the advantage of not 1 0. 

Before atating the Isain theorem, a simple conputation yields, 

for t C tl<t2, 
0 

Thus if W(tl, t2) is non-singular (positive definitive) it follows that 

W(to, t2) is a l s o  non-singular (positive definite). 

plication need not be true. 

The reverse Im- 

Theorem 11.1 

singular for all t2 > tl is that the pfaffian (2-7) be not integrable at 

A necessary and sufficient condition that W(t t2) be non- 1' 

tl' 
For ease in both using and proving this theorem, we list the implications 

and their contrapositives, 
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1 . A  Beceseary condition: Y(tl, t2) non-singular for  all t2 > tl 
- 

1' -> pfaffian (2-7) ie not integrable at t 

I .B+ Becessans contrawsitiver Pfaffian (2-7) integrable at tl 

w(tl, t2) is singdlar for some t2> tl. 

1.C Sufficient conditions Pfaffian (2-7) not integrable at tl 

e W ( t l ,  t2) is non-singnlar for all t2> tle 

1.D Sufficientt contrapositive: W(tl, t2) singular for sane t2> tl 

:=> pfaffian (2-7) is integrable at tlo 

- Proof: (We shall prove 1.B and 1.D)  

Assume the pfaffian (2-7) is integrable at tl. Then there is 

a vector b, which is a linear combination of the rows of B, and an 

> 0 such that i(t) = -b(t)A(t), for tl( t.5 tl + f . Let 
@(t, tl); $(tl, tl) P I, be the fundamental solution of 

Then the vector b admits the representation b(t) = c r1 (t, tl) = 

c @(t,, t) for some constant vector co 

Then 0 = b(t)h(t) = c $(t,, t) h(t). 

of H, and W is positive semi-definite, we have c W(t19 t) cT = 0 for 

tl( t < tl +e showing that there exists a t2 9 tl such that W(tl, t2) 

P A(t) x. 

Let h(t) be any column of H(t), 

Since h was an arbitrary column 

is singular. 

Assume, next, that W(t19 t2) is singular for some t,> tl. 

remark 3, it follows that W(t19 t) is singular fo r  all tl' t(t2, 
T This implies there exists a vector c(t2) sueh that c(t2)W(t19 t2)c (t,) = 0. 

From 
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Since the integrand of the integral defining W(tl, t2) is continuous, 

It follows that 0 

defined by b(t) 

that b(t) H(t) 

c(t2) #(t,, t)H(t) = o(t2) @-'(t, tl)H(t), thus b 

c(t2) #-l(t9 tl) is an admissible vector in the sense 

O 9  iee09 b lies in the subspace spanned by the rows of B. 

Define the scaler  valued function v(t9x) = c(t2) &"(t, tl)x= 

Then yx(t, x) = b(t), vt(t, x) = -b(t) A(t>x for tl( t S t2 showing 

that the pfaffain (2-7) is integrable at tle a 
The following illustrates the advantage of a definition of complete 

controllability for linear systems which does not depend on knowledge of 

0 a fundamental solution, 

It is known that an n dimensional system which is formed from a 

single r@ order eauation havina canstant coefficients and the control 

as forcinn term is completely controllable. We next show that this is 

a lso  true f o r  time varying systems of the form 

x(n)(t> + a,(t) x (npl)(t) + O . O  + an(t> x(t> = u(t>. 

Specifically we shall show that for any to, the associated pfaffian is 

not integrable implying W(to9 tl) is non-singular for 

We take the equivalent linear system of the form 

tl> to. 

;(t) A(t) y(t) + h(t) u(t) where 

A(t) = 

0 
0 Ln9 1 0 1 

-.  0 
0 -1 

~ o c o 9  -a n-1 -8 

h(t) = 

16 



One oan choose B ( t )  aa the (n-1)xn matrix 

0 

1 

0 

0 

0 

0 

m o o  

0 0 0  

0 . 0  

0 

0 

e 

The pfaffian system equivalent t o  (2-7) is  then 

(2-8) dXl - x2 d t  = 0 

dx2 - =3 dt = O 

I'f (2-8) were to be integrable there nust exist scalar  valued functions 

o<,(t), not all zero, so that the single pfaffian 

n-1 n-1 
c A 

is  an exact differential. 

(n-l), which shows (2-8) i s  not integrable f o r  any to. 

But t h i s  would imply o( ( t )  = 0, j = 1, 2, ..., 
j 
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Geometric Interpretation, Local Controllability, and the Singular Problem 

By associated a pfaffian system of the form (2-3) with the system (2-1), 

it is conspiouous that the stress is taken away from the functional form of 

the elements of the matrix H, and placed only on what the range of H(t, x), 

considered as an operator on *, is. This obviously should be the case 

when controls are required to be only x2 functions. 
In [g], Markus and Lee consider a system of the form 2 f(x, u), 

f e C1 in B? x fl , where R a compact set oontained in Er with 0 in its 
interior, is the range set of t h e  control. 

letting A = fx(O, 0 ) ,  H = f,(O, 0), it is shown that if the linear system 

x = Ax + Hu is completely controllable, then the set of points from which 
the origin can be reached in finite the by trajectories of i ne f(x, u), 
is an open connected set containing the origin. Kalman [lo] pointed out 

that a similar result can be obtained for a system of the form 

by assuming the linear approximation is completely controllable in terms of 

the criterion given in co~ollary L1. 

Assuming f(0, 0) = 0 and 

. 

= f(t, x, u) 

The system 

2 where x is an n vector, f is a C vector valued function and u is a r vector 

valued measurable controlp is said to be locally controllable along a 

solution 9' corresponding to control v if for some t > t all points in 1 0  
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some state space (n dimensional) neighborhood of 9 
time tl by trajectories of (2-9) with admissible control. 

(t,) are attainable in 

It would be somewhat falacious to say that a time dependent system 

is locally controllable, say at the origin, if all points in a neighborhood 

of the origin in state space are attainable by trajectories of the system 

in finite time. To see this, we uonsider the following example of G. Haynes. 

Example 1: 

= - x2 + (cos t) u 9 

. 
Itl + (sin t) n 0 x2 = 

An integral of the motion is seen to be x 

can picture as a rotating (with time) line in x 1, x2 space. 

from 0 to 2 f l  , a l l  points of E are swept out by this line. 

sin t - x2 cos t = 0, which one 1 a As t varies 
2 Bar multiply 

the first equation by cost the second by sin t and one obtains by adding; 

d - (xl cos t + x dt 2 sin t) = u or  

f t  
x cos t + x sin t =. lo u( 7) d 7  Combining this with the 1 2 

integral of the motion gives 

x 1 2(t) + x t ( t )  E [[ n('() d7] implying that as time increases, the 

two dimensional neighborhoods of the origin of E 

2 

2 which are attainable 

a lso  increaseo 
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Since all  solutions l i e  on a surface i n  (t, x) space, one would 

hardly feel that the system should be t ewed  loca l ly  controllable and is 

- not  loca l ly  controllable by the def in i t ion  given above. 

We next proueed with an analysis, similar  t o  tha t  used i n  the papers 

[ 91  and [lo], t o  examine local  cont ro l lab i l i ty  about a given t ra jec tory  of 

the system (2-1). 

a rb i t ra ry  x2 control and (p' the oorresponding solution. L e t  u ( t ;  0, 
( E e, be a family of controls such t ha t  u(tg 0) = v( t), US ex is t s ,  and 

denote x( 

Let x(to)  = 0 be i n i t i a l  da ta  f o r  t h i s  system v an 

;[) as the  response t o  u( , ,l). Then x( . ;c) s a t i s f i e s  

where H v i s  an nxn matrix with iJ3element  i H : v  V . 
X 

1/= 1 j 

For each t 2 t we view x( t ;  l )  as a mapping l- x with 
0, 

) denote the Jacobian matrix x ( t g  0). s 
Let &(t, to) be a 

) i s  non-singular, the at ta inable  

0- pV( t), 

We haver 

set  at 7 contains a neighborhood of the  point 

fundamental solution matrix of the system 

If f o r  some T ,  u 
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From lemma 1.1 and oorollary Iel we have 

Theorem 11.2 (-) A necessary and suf f ic ien t  condition tha t  there 

e x i s t  an rxn matrix n 

some tl> to is that the l i nea r  system 

such that Z ( t l ;  vv, ) is non-singular f o r  5 

is completely oontrollable. 

In terms of the pfaffian approach the equivalent theorem is  

Theorem IL3 

rxn matrix u 

is  tha t  the pfaff ian system B ( t ,  yv(t))dx - B ( t ,  yv(t)) 
[g;,(t, yy(t)) + Hx( t ,  yv(t))v(t)] x d t  = 0 be non-integrable, f o r  some 

A necessary and suf f ic ien t  condition tha t  there e x i s t  an 

such tha t  Z( t l ,  pv9 ) f~ non-singular for some tl> to, s "S 

tl> to, i o e o 9  tha t  

is 

the  rows of B, 

and exact d i f f e ren t i a l  f o r  any b which is a l inea r  combination of 

The same method, when applied t o  a system of the form (2-9) y ie lds  

Theorem 11.3' 

all  points i n  some s t a t e  space neighborhood of vv(t2> f o r  al l  t 2 B  tl are 

A suf f ic ien t  condition tha t  there e x i s t s  a tl>- to suoh that 
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at ta inable  i n  t i m e  t2 by t r d e c t o r i e s  of ( 2 - 9 )  with admissible controls, 

i s  tha t  there exists a tl>- to such tha t  the pfaff ian system 

B(tg v)dy - m-8 f x ( t 9  cpV(t)s V ( t ) ) Y  d t  = 0 

f 0 e] 

is not integrable at tlo [The notation B ( t j  v) is used t o  denote the 

dependence of B on the reference t r d e c t o r y ,  spec i f ica l ly  

B ( t i  8 )  fJt, yVW9 
It i s  in te res t ing  at t h i s  point t o  see the implications of the 

assumption that (2-10) & an exact d i f fe ren t ia l ,  

implied by 

This implies and is 

which can be recognized 

pr inciple  [ 111 approach 

It should be noted tha t  

adjoint vector which is 

as the so-called adjoint system of the maximum 

t o  the t i m e  optimal problem f o r  system (2-1)* 

if b(t ,6pv(t))  s a t i s f i e s  (2-11), then it i s  an 

orthogonal t o  a l l  of the columns of H. Since the 

maximum principle  (for eontrol components bounded by one i n  absolute value) 
n 

i-1 
implies8 choose nJ(t) = sgn bi(t ,  yv(t))HiJ(t, vv(t))g i n  t h i s  case 

it y ie lds  no information, 

I sha l l  designate such a problem as one which admits a t o t a l l g  

s i n w l a r  are vT9 L e o ,  where the maximum pr inciple  yields  no information 

i n  the t i m e  optimal problem, f o r  any components of the optimal control. 

The a rc  would be singular,  but not t o t a l l y  singular,  if there is an adjoint  
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vecrtor orthogonal t o  same, but not a l l  columns of E, 

Theorem II,4 

only if  yv is a t o t a l l y  singular arco 

The pfaff ian form (2-10) i s  an exact d i f f e ren t i a l  if and 

- Proofs It has been shown above tha t  i f  (2-10) i s  an exact d i f f e ren t i a l ,  

then the vector b s a t i s f i e s  (2-11)9 which implies pv i e  a t o t a l l y  singular 

arc e 

If 'p' is a t o t a l l y  singular arcs there  exists a vector p ( t )  such 

t ha t  i) p ( t )  H ( t ,  cp'(t)) E 0 and ii) i(t) = -p(t)  

[G(t,vv(t)) + H x ( t , ( P V ( t ) )  v(t)] 

a l i n e a r  combination of the rows of B ( t 9  vv(t)), while 11) implies t ha t  

t h i s  l i nea r  combination, (2-10) is an exaat d i f f e r e n t i a l e m  

From i) w e  conclude that p ( t )  is 

not a to t a l ly  singular a rc  implies the pfaff ian YT - To swmazize; 

form (2-10) is 

t >  to and u such tha t  Z ( x 9  Yv9 u t )  i s  non-singular and the at ta inable  

set a t  time T contains a neighborhood of the point pv(T). 
posi t ive of this statement provides an in te res t ing  characterization of 

an exaat d i f f e ren t i a l  whioh implies there e x i s t  
- 

t 
The contra- 

t o t a l l y  singular arcs, i o e o 9  i f  f o r  every t l > t  there 

every state space neighborhood of Pv(tl) which are not 

tl with x2 controls, the arc vv is t o t a l l y  singular, 

as w i l l  be shown by example, a t o t a l l y  singular a r c  aan 

boundary of the at ta inable  set, and thus provide a time 

0 
exist points i n  

a t ta inable  i n  time 

On the other hand, 

remain on the 

optimal trajectory,  

Theorem 11.5 

Z ( t ,  pv, u 5 )  is singular f o r  all t >, t 

t o r i e s  pvs i o e o O  every t ra jectory pv is t o t a l l y  singular. 

I f  the system (2-1) is not completely controllable at to, 

and a l l  reference t ra jee-  
0 9  "5 



- Proofs Any vector b, which is a l inea r  combination of the row8 of 

B, s a t i s f i e s  b ( t ,  x)H(t, x ) g O o  5 s  for any vector v ( t ) ,  

-b(t ,  r)Hx(t, x)v( t ) .  Evaluating this iden t i ty  at the point (t, vp(t)), 

subs t i tu t ing  into (2-11) and expanding of the l e f t  s ide  yields  

This i den t i ty  provides a necessary and suf f ic ien t  condition tha t  (2-10) 

be an exacrt d i f f e ren t i a l ,  Le., tha t  pV be t o t a l l y  singular. 

Bow assume the system (2-1) is not completely controllable. This 

means tha t  f o r  some b, a l i nea r  combination of the rows of B, the pf fa f ian  

form b ( t ,  x)dx  -b(t ,  x)g(t, x)dt is an exact d i f f e r e n t i a l ,  or 

T 
b t ( t , x ) s - b ( t ,  XI t 3 J t p  4 “dt, x> bx (t ,  X I  

b X ( t , x ) Z -  bx T (t ,  X ) = O .  

Evaluating these two i d e n t i t i e s  a t  ( t ,  cq”(t)) f o r  an a rb i t r a ry  control v 

shows t ha t  (2-12) is s a t i s f i e d ,  hence everg t r a j ec to ry  yv is t o t a l l y  

singular. 

A conjecture whioh one m i g h t  be tempted t o  make i s  tha t  if the 

system (2-1) is  completely controllable,  i t  admits no t o t a l l y  s ingular  

arcs. This is  r& trues as the  following example from 121 shows0 

. 
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Exaaple 11.1 

e 
2 x  u 2 

= '1 - 2 xl(o) = 1 

0 x2(o) = 0 0 

x 2 p 0 x  2 + a  

For the time optimal problem of reaching the point (2, 0), it is shown 

i n  [ 21 tha t  u 

is  imposed, and i t  eas i ly  fol lovs t h a t  t h i s  is a l s o  optimal i n  the c lass  

of x2 controls. 

0 i s  the optimal control, i f  the r e s t r i c t i o n  (a ( t )  15 1 

For t h i s  problem, one can use f o r  the matrix B, the s ingle  vector 

2 b = (1, x1 x2). The associated pffaf ian equation is 

dxl + x12 x2 dx2 + x: (r22- 1)dt  = 0. 

2- l ) )oo  Then (curl a(x)). 2 
Let ('19 a(x> = ( ' 9  '1 x 2 9  (x2 

a(x) I 2 x2 x12f 0, thus the pfaffian is not integrable. 

The optimal path from the point (1, 0) t o  (4, 0), a(> 1, is  ob- 

tained with zontrol u = 0, and is 

1 - 
'Pow T h i s  i s  a t o t a l l y  singular are. To show t h i s ,  

O e  

we note b ( t ,  t ) )  = (1, O), vO( 

= dxl + 0 dx2 - - 2x1 at. 
1- t 
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-2 x 
L e t  Z(x, t)  E (1, 0, l-t ). Then (curl z). < = 0 which implies the 

d t  = 0 is  integrable ,  and 9' is a t o t a l l y  pfaf f ian  dxl + 0 dx2 - l-t =1 

singular  arc. Here the a rc  'p" is on the  boundary of the at ta inable  set. 

It should be s t ressed a t  t h i s  point that i t  has been shown t ha t  

if f o r  some control v9  the matrix Z ( t ,  cp", ) i s  singular f o r  all t Z to, "S 
then su f f i c i en t ly  small n neighborhoods of a point (P'(t) con- 

t a i n  points not a t ta inable  in time t ,  from i n i t i a l  da ta  0 given at to. 

In f a c t  it w i l l  next be shown (Example I L 2 )  that this is not the case. 

and "S 
To 

do this ve mast produce a time optimal problem which posseses a t9tally 

s ingular  arc which y ie lds  neither a m i m u m  o r  minimum. 

t o t a l l y  singular,  Theorem 11.4 shows that one cannot conclude tha t  the 

Since the  a rc  is  

system is  loca l ly  controllable along t h i s  a r c  by considering the l inear ized 

equations as i n  Theorem 1102,, However the use of theorem 11.3' on ce r t a in  

a rcs  which d i f f e r  from the singular a rc  but have some points i n  common with 

it ,  w i l l  e s tab l i sh  the local control labi l i ty .  

We consider control systems of the form studied i n  [ 23s i.e. 

We assume tha t  i n  some region of i n t e r e s t  &of 

(2-14) A ( x )  s -B2(x) AI(x) + Rp(x) A*(x) 4 

and t ha t  Ais Bi, i = 1, ? are C 

s t a t e  space, 

0 
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!he pfaffian system associated with (2-13) ie the single pfaffian 

eqnat ion 

(2-15) B2(x) hl - B1(x) dx2 + O(X) dt = 0- 

Since n ( x )  4 0 and multiplication by a factor does not change inte- 

grability, this can be rewritten as 

B (4 B1(4 
Let Z(x) = (,&J - 'm I) ; then a necessary and sufficient 

condition that the pfaffian (2-16) be integrable at a point (t, x) is 

that Z(x) curl Z(x) 5 0 fn a neighborhood of xe Computing yields 

where O ( x )  (using the notatian of 621) can be directly computed from 

the rigfrt sides of the differential equations (2-13)0 

Let v be a continuous control (this is sufficient continuity when 

the control appears linearly) satisfying (v(t) I < 1, and let pv be the 
corresponding trajectory of (2-13) 

Theorem II,6 

for any t > tl a l l  points in some state space neighborhood of cp'(t2) 

are attainable by trajectories of (2-l3)$ in time t 

contro 1 s e 

If for some tl>- to, Pv(tl) is not a zero of W ,  then 

2 

with admissible 2$ 
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- Prooft The variat ional  equation f o r  the  system (2-13) about the 

t ra jec tory  Wv is given by 

where A = ( :) , B = ( ::) . The pfaf'fian equivalent t o  (2-10) 

f o r  t h i s  var ia t ional  equation i a  

d t )  B&'(t))] Y dt = 0. 

A auff ic ient  condition tha t  (2-17) be integrable at tl i s  that 

implied 

calculationo 

[In terns of Theorem II.4, (2-18) rstates tha t  yV(tl) is not a point of a 

singular arco In [ 2,  pgo 971 i t  is shown that  f o r  systems of t h i s  type 

singular arcs are charaoteriaed by the fact t h a t c d i s  zero along them, 

It follows that  i f  

a singular arc, hence (2-37) i e  not integrable and the conclusion of the 

( t  ) i f 3  not a zero of  W, then i t  is  & a point of " 
theorem follows.] 
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It should be s t ressed that  the i n t e g r a b i l i t y  of (2-16) requires 

W (x) = Z(x) curl Z(x) t o  be zero i n  a neighborhood of a point, uh i le  

Theorem 11.6 deals only with the value of& at a point. 

Example 11.1, t o  have the pfaffian (2-16) not integrable  at a point (t, x) 

at which &(T) = 0 ,  and yet  have a t ra jec tory  @’ such t ha t  cp’.c-T) 
and the system is not loca l ly  controllable about 

It is possible, 
- -  
- 
x 

. Iov 
We next give the example of a problem which is  loca l ly  controllable 

along a t o t a l l y  singular am. 

Example I L 2  

of po(t,) are at ta inable  i n  time tl,) 

(A singular arc  Po(*) such t ha t  a l l  points i n  a neighborhood 

Consider the system 
b 

=1 = [.(t)l 5 1 

x ( 0 )  = 0 

Then A(x) 

optimal problem of reaching the final point x (0, $) , the  Greens theorem 

approach [ 21, yields  the follow% 

1, d ( x )  =, x129 hence if we were t o  consider the t h e  

f 

P i w e  1 



the optimal a rc  being shown by the arrows. There is an arc along whiah 

LU= 0,  Le., x1= 0, and while this can be a t ta ined  with the aontrol 

u E 0 it yie lds  ne i ther  a maximum o r  minimum t o  the time optimal problem. 

This arc  we designate ae $3'8 

It is easily checked t h a t  the var ia t ional  equation along yo i s  & 

completely controllable,, 

Bow consider a r e l a t ion  x = kl sin k x kl, k2 > 0 with k2 > 4 77. 1 2 2 9  

It w i l l  be shown that f o r  k,. suf f ic ien t ly  small, there ex i s t s  a unique 

admissible continuous control. E( t )  with t r a j ec to ry  9" which has 
- 

{(xl, x2)z x = kl s i n  k2 x2, x , z O ]  as its track. 1 

From the Greens theorem approach [ 2 3 and the symmetry of u ( x )  about - 
the  l i n e  xl= 0, the parametrization of Cp" must be such tha t  the even 

numbered crossings of 

x2>0,  one must have 

the x axis, counting only crossings which occur f o r  2 

W e  w i l l  be interested in the case n = 1, 80 t h a t  - 7.c <1/2* It w i l l  
k2 I 

__--- 

be shown tha t  there is  local cont ro l lab i l i ty  along and since v 
- 30 



a ), it will follow that a neighborhood of 277- 
k2 

277- 2 r r  ) is attainable in time - ,, 
Ir2 

F i r s t  we w i l l  show that for 5 sufffoiently small, there is a - 
unique continuous n which leads to a trajectory vu having 
{(xl, x2)8 xl = kl sin k2 x2, x 2 z  0 as its track, Differentiation J 
of the track relation vith respect to t yields 

gl(t) = kl k2 ices k2 x2(t)] :2(t)o 

Substitution from the system equations leaves 

For  an^ control u, 

Substituting these in (2-19) yields an expression of the form 

u(t) = kl(&u)(t) 

where the definition of the nonlinear operatorsis obvious. Let 
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C [0, s] denote the space of continuous vector  valued funct iowu on the  

in t e rva l  [ 0, B] , with the supremum norm, and B l!? the  closed b a l l  of radius 

)ci i n  this spaoe. It is e a s i l y  shqwn tha t  for kl su f f i c i en t ly  s a l  but 

posi t ive,  u e #=>klru 6 # 9  and k l g i s  a contracting map. Thus - 
k l g h a a  a unique f ixed point i n  &, c a l l  t h i s  point Go Then Ip”_ is  

a singular t ra jectory,  since kl posi t ive implies u(t) f 0, and Cpu has the 

desired track. 

How f o r  0 < tl< a , (PU(t,) is  not a point of the singular arc, 
- 

k2 
hence not a zero of&). 

some neighborhood of vu(t2), for m y  t 2 7  tl are  a t ta inable  i n  time t by 

t r a j ec to r i e s  v i t h  admissible controls, hence t h i s  is t rue  f o r  t2 

From Theorem 11.6 it follows tha t  all points i n  - 

23 -. - k2 
To de tewine  loca l  cont ro l lab i l i ty  dong lp” by use of the fundamental 

solut ion of the var ia t iona l  equation about t h i s  t ra jec tory  would be a 

v i r t u a l l y  impossible task. 

In  concluding, it should be noted that t o t a l l y  singulas arcs  were de- 

f ined  with no mention made o f  t ransversal i ty  conditions. 

use these conditions, i n  very special  eases, t o  ru l e  out the existence of 

s ingular  arcs in the optimal strategy. Also, f o r  a t i m e  optimal problem 

f o r  a system of the form 

It is  possible t o  

(2-20) ;(t) = g(x ( t ) )  + H(x(t))u(t)  

the m a x i m u m  pr inciple  yields  the f a c t  t h a t  the Hamiltonian i s  constant 

along the optimal path. We sha l l  show t h a t  t h i s  cannot be used t o  rule 

- 32 - 



out totally singular BTCB, sinee enoh arcs automatically eatiefy the oon- 

dition even though the Hamiltonian is seemingly a function of time along 

thmo 

For the system (2-20) with any given control a(t) we define the 

Wltonian f o r  the time optimal problem as 

A necessary condition is that ).dis a constant along the optimal tra- 

jectory, it need not be so on a non-optimal trajectory. 

joint system as 

Define the ad- 

Theorem 11.7 

any totally singular a r c o  

The Hamiltonian for the system (2-20) is constant d o n g  

- Proofx We defined a t o t a l l y  singular arc as an ara  $0“ w h i c h  

satisfiea (2-20) for which there exists and adjoint veator p(t) satisfying 

(2-21) such that p(t)H(pU(t))=O f o r  a set of t values having positive 

measure. Then 

”% From (2-20) giG - Hik 
p.  Hik % Substituting in (2-22) 
= xu 
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from the condition p(t )H(pP(t ) )  = 0. 
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111. THE EQUIVAIDICE AND APPROXIMATION OF CONTROL PROBLMS 

INTRODUCTIOR TO SECTION I11 

In this sect ion w e  w i l l  be concerned with the  t i m e  optimal feed- 

back control  problem f o r  an n vector s y s t e ~  of the  form 

where the control  u i s  an r vector valued function with values in a 

given set  U. The major i n t e r e s t  m i l l  be i n  feedback controls. 

One of the d i f f i c u l t i e s  i n  the theory of optimal feedback control  is 

the  discontinuity of the  control with respect t o  the  state var iables ,  

which the necessary condition termed the maximum principle ,  so often 

shows t o  be the caseo 

u*( t ,  x, p) be so that H(t, x, p, u* ( t ,  x, p))  2 H(t,  X q  p9 a) for 

a l l  P EU, and H*(t, x, p) =, H(t, x, pp u*( t ,  x, p > l p  the Hamilton- 

Jacobi equation approach [I] often leads  t o  a p a r t i a l  d i f f e r e n t i a l  

equation with discontinuous coeff ic ients ,  while the Hamiltonian equations 

of motion which describe the system ( the  charac te r i s t ic  equations of t he  

Hamilton-Jacobi equation) are of the form 

Letting H(t, x, p, u) s po f ( t ,  x9 U) - 1; 

The m a x i m u m  pr inciple  of Pontriagin, f o r  time optimal problems, assures 

us that i f  u* ( t )  is an optimal c o n t r o l ,  x * ( t >  the  corresponding optimal 

trajecttory, then there e x i s t s  an absolutely continuous n vector p*( t )  , 

not i den t i ca l ly  zero, such that H*( t ,x*( t ) ,p*( t>)  P H ( t , x * ( t > , p * ( t ) , u * ( t > )  

while x* and p* s a t i s f y  equations (3-2)o The usual use of t he  m a x i m u m  
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prfinciple proceeds, however, by attempting t o  generate candidates for an 

optimal t ra jec tory  by eolving a two point boundary value problem f o r  the  

system (3-2). 

of existence and uniqueness of solutions t o  these equations cannot eas i ly  

be answered. 

Since u* may be discqntinuous, the  fundamental questions 

An a l t e rna t ive  would be t o  r e s t r i c t  the controls  t o  be continuous, 

1 or even C (continuously different iable)  functions and attempt t o  gen- 

erate within this c la s s  a sequence of controls  which w i l l  i n  some sense 

tend toward the  optimal control. In doing this, however, one must 

seemingly discard the m a x i m u m  principle which is one of the most useful  

t oo l s  f o r  generating optimal controls, f o r  i t  so often demands dis- 

continuous controls,  

"he approach taken here is not t o  forcefu l ly  restrict  the  class of 

approximating controls,  but instead t o  generate a c l a s s  of approximating 

I problems whose so lu t ions  w i l l  be continuous or C controls  and w i l l  tend, 

i n  a given sense, t o  the solut ion of the or ig ina l  problem, 

For the system (3-1) l e t  R ( t ,  x )  = [ f ( t ,  x,  u): u €  U] 

say t h a t  the time optimal problem f o r  a system x = g ( t ,  x, V I ,  

equivalent t o  t h a t  fo r  the system (3-1) i f  fg( t ,x ,v) :v  E. Vf = R(t,  x) for 

all ( t , x )  i n  some domain of i n t e re s to  

optimal problem f o r  the system x = h 

We shall 
e 

v € V is 

For given E 7 0 r e  define the time 

" E  ( t ,  x, v ) *  v € - ( E )  t o  be an 

€-approximate equivalent problem t o  the time optimal problem f o r  (3-1) 

i f  d ({h ' ( t ,x ,v) :vEV(€))  

of i n t e re s t .  Here d(Q,R) is the Hausdorff metric distance f o r  sets i n  

R ( t ,  x )L  E f o r  a l l  ( t , x )  i n  the domain 

In tu i t i ve ly  equivalent problems have the same optimal t r a j e c t o r i e s  (as 

w i l l  be shown) w h i l e  the optimal t r a j ec to r i e s  of E -  approximate equivalent 
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a problems rill be close (uniformly) t o  those of the or ig ina l  problem. 

It rill be shorn that under appropriate conditione (eseent ia l ly  the 

Fi l l ipov existence conditions [2] ) the  approximating problems can be 

choeen i n  such a ray tha t  the correeponding feedback controlra a re  con- 

t inuom, or even of clase C 1 I n  ce r t a in  casee this a l lo re  the Hamilton- 

Jacobi theory, as derived i n  [I] * t o  be u t i l i zed  f o r  the conetruction 

of f i e l d s  of optimal t r a j ec to r i e s  and optimal feedback controls, 

Although w e  deal only w i t h  the time optimal problem, i t  should be 

noted that f o r  a problem of t h e  form x' (T = f (  T, x( ., n( TI), with 

o((6 , x(@ ) p  u ( 6  ) I d 6  where 
?if 

t h e  functional t o  be minimized being 

% 
the sca la r  valued function d s a t i s f i e s  &(a, x, u) 1 b ~ 0 ,  the change 

of independent var iable  

t (  T )  = ir d ( C ,  x ( 6  ), u ( 6  ) I d a  reduces the problem t o  an 

equivalent time optimal problem for the system 

THE MAXIMIZATION OF p o r  WITH r I N  A STRICTLY CONVEX SET 

Our motivation is t o  choose approximating probleqs fo r  which the 

maximum principle  w i l l  y ie ld  smooth controlso 

which maximizes the 

r € R a given compact s e t  i n  E?. 

the s e t  R which w i l l  insure tha t  r* is smooth since i t  is a maximization 

of this type which causes discont inui t ies  i n  the control, 

Let r*(p) be the function 

functional F(p,r)  z p o r  for fixed p € I!?- [ O ]  , 
We begin by examining conditions on 
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t 

Definition. 

hyperplane is a hyperplane H which l i e s  on one s ide  of S and S n  H # 1 
If S is a set contained i n  E” (Euclidean n space) a support 

the empty set. 

Definition. A convex set  R contained i n  E” w i l l  be sa id  t o  be s t r i c t l y  

convex i f  i t  contain8 more than one point,  and every support hyperplane 

has a t  moat one point i n  common with Re 

If R is a compact set  in li? we denote its boundary by &Re 

Lemma II1,l. If R is a s t r i c t l ;  convex set  i n  E?* then R has i n t e r n a l  

( i n t e r i o r )  points. (This r e s u l t  depends on f i n i t e  dimensionality) . 
Proof L e t  roo rl E R, ro # rlP and V1 be the l i n e a r  var ie ty  of 

dimension one determined by these points, 

taining V1. 1 

L e t  M be any hyperplane con- 

contains two points  of R i t  is not a support plane 

1 

Since H 

and there  exists a point r 

determined by ro, r and r2; V has dimension two, L e t  M2 be a hyper- 

plane containing V Again there is a point r E R, M2. We con- 

t inue inductively ge t t ing  a t  the (n-1)st s t e p  a l i nea r  var ie ty  V of 

dimension (n-1) determined by the  points roq , Then there  

e x i s t s  a unique hyperplane M 

rn€  R, rn e Mn,lo 

of the set  of points  ro, 
pn 5 and s ince  the vectors r 1 - r 0’ 

r - r  , , r - r are linearly independent, they determine an 
o, 2 n 0 

n c e l l  

€ R, r2 # Ml, L e t  V2 be the  l i n e a r  var ie ty  2 

1 2 

r3 2” 3 

n-1 

containing V and again a point n-1 n-19 

Since R is  convex i t  contains the convex h u l l  

., , 

which has non void interior,! 
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a Lemma IIX.2. 

f ixed p e s” - 10) , the function F(p, 

a unique point r*(p) = rn E. b ~ .  

L e t  R be a s t r i c t l y  convex, compact se t  i n  e. Then f o r  any 

attains its m a x i m u m  value a t  

Proof For any fixed p, F(p, is a continuous funct4on &I? the  compact 

set R and hence a t t a i n s  its m a x i m u m  there. Suppose the  m a x i m u m  is a t ta ined  

a t  an i n t e r i o r  point r € R. 

i n  Re 

LetN(ro)  be a neighborhood of ro contained 
0 

Then p ro is an i n t e r i o r  point of the real in t e rva l  p. N ( r  

[pa r: r E N ( r o ) f  , contradicting the f a c t  that F attains its maximum a t  

= 
0 

r .  
0 

To show uniqueness, assume F(p, attains its m a x i m u m  a t  r w h i l e  
0’ 

r1 f ro belongs t o  R and F(p, r l)  = F(p, role 

r(& = <ro + ( 1  - o(J rl, - 00 

F(p, r(d-1) = F(p, ro) for every such point r(&. 

r(&) is an i n t e r i o r  point of R, the argument of the  previous paragraph 

Define 

d c o o  It follows that 

If f o r  some < , e 
would show a contradiction t o  F(pp - ) a t t a in ing  its m a x i m u m  a t  r 

the one dimensional l i n e a r  variety V = [ d r  + ( l - d ) r l :  - oo- d -  a) 
does not i n t e r sec t  the i n t e r i o r  of R, which is not empty by Lemma 111.1. 

By theorem 3.6-E [J] there exists a closed hyperplane M containing V such 

that the i n t e r i o r  of R l i e s  s t r i c t l y  on one s ide  of M. 

Thus 
0. 

0 

It follows that M 

is a support plane f o r  R, and s i n c e  H contains more than one point of R,  

this is a contradiction to  the s t r i c t  convexity.( 

Theorem 111.1 L e t  R be a s t r i c t l y  convex, compact set i n  E”. Then the 

function r*(p)  (shown t o  be w e l l  defined i n  lemma 111-2) is continuous. 

Proof Suppose p - p. Since R is compact, some subsequence n 
of the sequence [r*(pn)) 

l o s s  of general i ty  i n  assuming i t  is the or ig ina l  sequence, i.e. 

converges t o  a point of R, and there  is no 

e 
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rl. We suppose r*(p> = r # r and seek a contradiction. 2 1  l e t  r* {pn)----+ 

From the def in i t ion  of c* , F(p, r2) 5 F(p, rl); l e t  

Since F i a  continuous there edsts  an I a 0  such that 

I We next examine when the function r*(p)  is C 

Definition. For y En, I y l  

0 Lemma 111.3. Let R be a s t r i c t l y  convex, compact set  i n  8 which has a 

unique outward uni t  normal n( r )  at each point r €  bR. 

p € E” - 10) , F(pp 

Then for f ixed 

achieves its m a x i m u m  at the  unique point 

r € a R  such tha t  n(r = p/Ipl 
-0 0 

, 
Proof Assume  without loss of general i ty  that zero is an i n t e r i o r  

point  of B. 

For x E. e, l e t  I (x )  = {a: a > 0, a’lx E B ] and define 

p ( x )  = in f .  a. 
a €.I(x) 

; p ( x )  i s  cal led the support function of R,  o r  a l s o  the 

Minkowski functional. We note that i f  r E a R  and y is any vector, then 
0 

OCY + r €aR f o r  a real sca la r  &> 0, 

and f o r  d su f f i c i en t ly  small, is i n  a neighborhood of roo 

0 
-41- 



a From lemma 111.2, w e  know F(p , . )  achieves its maximum at  a unique 

- 1 p Y +  ro 
d - ro) . point on bR , l e t  r be the point, L e t  eiy, ro) = l i m  

0 

d + - O  \e (dy+ro) 

Since c?R has a unique outward normal at each point, g(y, ro) = -g(-y,ro). 

Since p ~r 

t h a t  p -g(y,  r ),c 0 f o r  a l l  rD 

p e g(y, ro) o implies p g(-y, ro) > 0, a contradiction. ~ h n s  

p g(y, ro) = 0 for a l l  y, or a necessary condition that r 

F(p, 

Since R is s t r i c t l y  convex i t  is easi ly  shown tha t  there  are exactly 

two points which s a t i s f y  this necessary condition, one with outward 

normal p/ipI giving F a m a x i m u m ,  the other with noraial -p/!p! which 

2 p r f o r  a l l  r E b R i n  a neighborhood of ro, i t  follows 
0 

Assuming there  exist6 y such that 
0 

presents 
0 

a maximum is that p be  orthogonal t o  the support hyperplane a t  roo 

gives F a m i n i m u m .  

Definition. We say tha t  a s t r i c t l y  convex, compact se t  R i n  E? has a 
0 

1 
smooth boundary i f  there  e x i s t s  a unique outward u n i t  normal n( r )  € C 

defined on a R .  

function i n  a neighborhood of r E b R , see, f o r  example, [ 41 pg, 27), 

1 (Actually w e  consider n as a r e s t r i c t i o n  of a C 

Theorem 111.2, 

posi t ive Gaussian curvature at all points,  then r*(p)  € C e 

If R is a compact set i n  E” with smooth boundary having 

1 

Since i t  i s  assumed that the  u n i t  normal t o  a R  is of class C , 1 Proof 

the Gaussian curvature is a continuous pos i t ive  function on aR, But aR 
is compact, thus the Gaussian curvature is bounded away from zeros From 

theorem 5.5 [5 , pg. 351 i t  is  easi ly  followed t h a t  R i s  s t r i c t l y  convex. 

From lemma 111.3, w e  have thar r*(p)  satisfies n(r*(p))  = p/ Ip  I . L e t  

r = r* (p  ) be an a rb i t r a ry  point on 3 R 
0 0 a 
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The method w i l l  be t o  u t i l i z e  the impl ic i t  function theorem on a 

r e l a t i o n  of the form g(r, p) I n(r) - p/lpi 

Let (', , Cn-' be a local  coordinate system fo r  a neighborhood 

of ro on b 8. Then the inclusion map from b B- E" determines n 

sapoth functions x,( , , 4 1, . , 
or b r i e f l y  x( l o  Assume x(0) = r and l e t  VI be a measurable neighborhood 

of zero i n  the loca l  coordinate system, 

x ( tl, . 0 , 1 n-1 

0 

n-1 Let  Sn-l be the uni t  (n-1) sphere; w e  consider n( 1: hR- S 
n-1 Define e( : V1 - S by n(x ( ) )  = Q( ) Thus 

n E c1 * e G cl0 

Let  p= g p )  = p/\pl p € I!? - fO] ; then p e  C1. Our approach 

w i l l  be t o  u t i l i z e  the impl ic i t  function theorem on the  r e l a t ion  

G ( C ,  = Q ( 6 )  - 5 0 .  
We note tha t  G E Cl, and if 6 = @pol then G ( 0 ,  e) = 0. Also 

It must be shown tha t  de t (8  (0)) # 0. 

var ies  i n  V1, x( (1 

t races  out a region 

5: G e  (0, ) = Q (0). 
0 t 

From d i f f e r e n t i a l  geometry w e  r e c a l l  that as 

2 t r aces  out a region V 

V 

of a R  at  x( 5; ) e and A 

on a R while the normal Q( 5 
on the surface of the un i t  sphere. L e t  K ( C  ) denote the Gaussian curvature 

3 
the  "area" of V Then 3 3" 

= K ( c ) d  ( But 1 det (,-y-) a QK) d c  = A3. Since V1 is A3 
v1 v1 

a rb i t r a ry  (but measurable) and 8 E. C 1 , this implies det  (d  2:)) = K ( 5 ) .  
BY assumption K is  posi t ive at a l l  points  of a R , hence 

de t (Qf  (0)) # 0. 

of a C function such tha t  G( [ ( 2 0. 

The impl ic i t  function theorem now gives the  existence 

1 

Then r*(p)  = x( { ( p ( p ) ) )  e C1'.I a 
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a The following is an example of a s t r i c t l y  convex se t  R with smooth 

boundary and a point a t  which the Gaussian curvature K is zero, for which 

r*(p)  is not c'. 
4 

Le t  pa r t  of the boundary of RC J8 consis t  of the curve y = x , the  

rest  so as t o  make R s t r i c t l y  convex and with smooth boundary. 

our a t t en t ion  t o  the defined pa r t  of the boundary, i n  par t icu lar  t o  the 

point (0, 0) a t  which K is zeroo 

We r e s t r i c t  

3 The outward normal is given by ( 4  x , -1). L e t  p =(p,, p2) have p2 

negative and p near zero. 1 

the point on the curve y = x 

(-'1/p2, -1). This g ives  x*(p) = ('p1/4 p2) y*(p) = (-'1/4p2) , 

To compute r* (p )  z (x*(p),  y*(p))  w e  compute 

4 where the normal has di rec t ion  numbers 

4/3 v3 

ax*(  is seen t o  not be continuous a t  p = 0. 1 
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APPROXIXATION OF OPTIMAL TRAJECTORIES 

The Time Optimal Problem a 
Consider the system (3-11, with U a compact set ,  and i n i t i a l  data 

manifold i n  the  (n+l)  dimensional 2 x( to)  = xoo 

( t , x )  space with the property that for any tZ, t 

is compact i n  Ji?l0 

having values i n  U, such tha t  the  solut ion of t he  in i t ia l  value problem 

L e t  S be a smooth (C 

f ( t , x ) € S :  t2 5 t 5 t ] 
The problem is t o  f ind a measurable function u = u ( t )  

3, 3 

for (3-1) with u = u ( t ) ,  in te rsec ts  the  t a rge t  S i n  minimum time; i . eoq  

is an optimal t ra jectory.  

We next give the conditions of Fi l l ipov  [2] , which insure the 

existence of an optimal (open loop)  control,  and optimal t ra jec tory  f o r  

the t i m e  optimal problem. 

Existence Conditions 

(3-3) f ( t , x , d  is continuous i n  a l l  var iables  t , x  and u, and is 

continuously d i f fe ren t iab le  with respect t o  xo 

2 (3-4) x -  f ( t , x ,u )  c C( 1x1 + 1)  f o r  all t ,  x,  u. 

(3-5) R(t,x) E f ( t , x ,u ) :u  (2 U) 

(3-6) 

is convex for every t ,x .  i 
There e x i s t s  a t  least one measurable function u ( t )  with values 

i n  U, such tha t  the corresponding so lu t ion  of the i n i t i a l  value, 

problem for (3-1) a t t a ins  the t a rge t  S f o r  some t l= toe 

Equivalence of Problems 

L e t  the  same time optimal problem, as posed f o r  (3-11, also be posed 

for  the system 

where g s a t i s f i e s  condition (3-3)* L e t  Q(t,x) E g(t ,x ,v) :v  E V . I 
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Theorem 111.3 Assume the exietence condition8 are s a t i s f i e d  for the  

time optimal problem f o r  the system (3-1) 

optimal t ra jec tory  and u* the  optimal control. 

f o r  a l l  ( t , x ) ,  

optimal problem for  the system (3-7) and there  e x i s t s  a measurable 

function v* ( t )  with values i n  V such that 

almost everywhere. 

L e t  y( 0 ; u*) denote the 

Then i f  Q(t,x) = R(t,x) 

p( ; u*) is an optimal t ra jec tory  f o r  the  time 

);j ( t ;  u*) = g(t ,$Q(t ;u*) ,v*(t))  

Proof f;t, fit; u*), u*( t ) )  is a measurable function of t ,  with - 
values (almost everywhere) in R ( t ,  $Q(t; u*)), therefore  i n  Q( t , (a ( t ;  u*)). 

From lgrPma 1 O f  FiIlipOV 

with values i n  V such that f ( t v  P(t . ;u*) ,u*(t))=g(t,(o(t,n*),v*(t)) almost 

everywhere. 

everywhere. 

[2] there e x i s t s  a measurable function v* ( t )  

0 

It follows t h a t  P ( t ;  u*) = g ( t , f l t ; u * ) ,  v*( t ) )  almost 

Now if e ; u*) were not an optimal t ra jec tory  for (3-7), i . eop  

p( ; v) provides a be t t e r  time, the same argument shows that 

is a solut ion of (3-1) f o r  some measurable control  u with values i n  U, 

thereby contradicting the  assumed optimality of 

; v) 

fl - ; u * > ~ #  
This theorem s t r e s s e s  the fac t  that i n  seeking optimal t r a j ec to r i e s ,  

i t  is the set  function R(t,x) which i s  of major importance, not the  

function f ( t ,x ,u)  or the control s e t  Uo 

When the conditions of theorem 111-3 are s a t i s f i e d  w e  define the  t i m e  

;e 

If the existence conditions are s a t i s f i e d  f o r  the time optimal problem, 

from conditions (3-4) and (3-6) we can obtain a compact region of ( t , x )  

space t o  which analysis  can be res t r ic ted .  

condition (3-4) implies any solution x ( t )  of (3-1) satisfies 

Indeed f o r  to t 5 tl 

2 
lX(t)l2 Z ( I x o l  

Euclidean norme 

+ 1)  exp (2C ltl-tol I o  Here Ix(t)l  

Henceforth, w e  denote by O& the  compact region of ( t , x )  

stands f o r  the usual 



+ 1)exp ( 2 ~  I 2tl-tol 1. 2 space defined by to 4 t = 2 tl , 1x1 ( IxoI 

Definition. 

e is derived from the following metric: 

The Hausdorff metric topo1og;E f o r  non-empty compact sets  i n  

The distance between two non- 

empty compact sets  X and Y i n  the  smallest real number d = d(X,Y) such 

that X l i e s  i n  the d neighborhood of Y and Y l i e s  i n  the d neighborhood 

of x. 

E Approximate Equivalent Problems 

Definition. For given € =- 0 the time optimal problem f o r  the system 

x O E  = h ( ~ , X , V ) ~  h E cont.fm.%s an EIXZ?XV(E), is sa id  t o  be an € 

approximate equivalent problem t o  the  time optimal problem fo r  (3-1) i f  the 

set R(t,x, E )  3 \he ( t ,x ,v) :  vE.V(C )'f Z R(t,x) and 

d(R(t,x,E R(t9x)3Z6. f o r  a l l  ( t , x ) 5  06. , 
Since he ( t p x ,  is continuous on the compact set V( E ) , R( t,x, E ) a is compact. 

Theorem 111.4. Assume that the Fi l l ipov conditions (3-31, (3-4) and (3-5) 

are s a t i s f i e d  f o r  the time optimal problem with system equations (3-1)- 

Then f o r  every L - 0  there e x i s t s  an E approximate equivalent problem 

with system equations x O E  = h ( t , x ,v )P  v € V ( E )  which satisfies the 

following propert ieso 

a) The control s e t  V( 6 ) can be taken t o  be the uni t  b a l l  of E?, 

which we denote Bn0 

00 b) h' is a C function on b x  Bn, while f o r  each ( t ,x )€  06- , 
hE ( t ,~ ,  ) is one-one on B - E?, 

r E  c )  The set  R ( t , x , E )  f Lh ( tPx ,v ) :  v€Bnf  has smooth boundary 

having posi t ive Gaussian curvature, 
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d) The (s ingle  valued) function v*(t ,x ,p)  with values i n  BP which 

maximizes H(t,x,,p,v; E 

p € I!?- { O )  

the  (n-1) ephereo 

= poh' (t, ,x,,v) - 1 f o r  each ( t , x ? €  .$, 

Actually v*(t,x,,p) € b Bn = S 1 n-1 is C i n  t p x ,  and p. 

The proof will proceed by obtaining a simplicial  approximation t o  & 
i n  which the diameters of the simplexes are su f f i c i en t ly  small. 

each vertex (t 

R(tis xi) by a s t r i c t l y  convex set &(ti, xi, € 

Gaussian curvature, 

s t ructed so tha t  & ( t i ,  x I C 1 = \ g  

of g c  

such a manner tha t  €or each (t,,x)C b 
with posi t ive Gaussian curvature, 

tained by smoothing the funetioo. g'E 

Friedricks moll i f ies  technique, 

For 

x ) of a simplex, re approximate the convex set  

having posi t ive 

i9 i 

A vector function g E (t i9 xi; 0 ) is then con- 

' 6  n \  ( t iv  xi; v): v e B  f and by use i' 

the set: functisn Q is extended continuously t o  a l l  of C& i n  

Q ( t 9 x ; ;  E has smooth boundary 

The desired function h E  is then ob- 

i n  the v a r i a b l e s  ( t , x )  v ia  the 

Proof R(t,x) is  continuousp in the Hausdorff metric topology,, on the  

compact set  & FOP any E P l e t  5 3 o be such that 

d ( R ( t , x ) , R ( t Q , x P 3 > ~ ~ : 8  whenever ib t ,x ) - ( tQ9x ' ) l  e 6. L e t  6 n+l  be 

any bounded geometric simplex rah5c.h contains & ,, and K 

complex consisting of this single  simplex, 

K 

of geometric simplexes [zgnt' 1 

g 

be the geometric 
g 

By baryeentric subdivision 

can be subdivided i n t o  a geometric complex KO consisting of a family 
G g 

each having diameter less than 6- 

Each point ( t ,x>C ob" has 

( t , x )  - - f2 d" 1 (ti, x . >  1 

i-1 

.4 

a unique representation of the form 

(n+2> points  (ti,, x 1 are the vertices of  the geometric simplex from 

the family \Ggn+' 3 to which the  point ( t ,x) belmgs, Without loss of 
% 
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general i ty  w e  can now consider the union of the members of 

which have a l l  ver t ices  i n  as a new domain of in t e re s t ;  c a l l  this 

domain again & 
Let ( t i ,  x,) be an arbitrary vertex in ob-. Then R(ti, xi) ie con- 

vexo L e t  \n(R(tig xiIS €/4) be a convex c/4 neighborhood of 

R(ti9 xi)* F'rom 16 , pg. 381 there exista a s t r i c t l y  convex set  

':"(R(ti, xi), &(ti,  xi$ G ) containing E/4);  having an analyt ic  boundary 

with posi t ive Gaussian curvature, and such tha t  

d(Q(tisxi, f 1, q(R(t i9  xi)$ e/'& ))e '/he 

For each ( t i $  xi ) E' b 
above. 

we construct a corresponding s e t  &(ti, xis E as 

on a l l  We next proceed t o  define a se t  valued function Q(tqx, € 

of ob 0 

It can be assumed without Loss of general i ty  that 0 CR( t ,x )  for a l l  

( t , x )  E ,, Indeed if this were not so, one could choose a point 

u E U and construct new s e t s  S( t ,x)  f [f . t9x,u) - f(t,x,uo): u E u 1 
0 'c 

which s a t i s f y  this property, 
n-1 a 1 L e t  Bn be the unit b a l l  i n  8; Sn-' itse surface and v , o o o 9 v  

n-l coordinate system on S 

Then a ray from the or ig in  through ( v  

&(ti ,  xip E ) in a unique point which we decote gE ( t .  $x.  ,v 

This defines g E  (tisxiP e )  on 8-l; t o  extend E t  t o  Bn l e t  

v = (v , e ., vn) Bn0 Define g E  (ti, xi9 v) as that point i n  

Q(t, 

(v  v 1) and i s  such tha t  

w h i l e  vn measures distance from the origin.  

1 2  
v , vn-19 1) str ikes  

1 , ~ ~ - ' , l ) ~  
1 1  

1 

xi, E ) which l i e s  on the r a y  through the or ig in  and 

1 Xl-1 
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g E ( t i ,  Xi' ' 1: Bn - Q ( t i ,  xiq 6 ) i n  a one t o  one fashion, 

We rill define Q(t, x, f on all of by extending the  def in i t ion  

of g c  t o  a l l  ( t , x > E  ob 0 

n+2 

Assume ( t q x ) €  ob- L e t  ( t , x )  = d., ( t i ,  xi> be the unique 

i=l 

representation of ( t , x )  in terms of the  ve r t i ce s  of the  geometric 

i) n(R( t ,x) ,  E)8)dQ(t9x01E)e Indeed, from the choice of 6 , 
)1(R( t , E / 8 X  U R (  tis xi) E. /4) 6 Q(ti9 xi, € ) f o r  all 

ver t ices  (ti, x . )  of the simplex in which ( t , x>  is contained. 

But Q( tpxp  E) = )- $ &(ti ,  xi, G Thus i f  a point is i n  

1 - 

n(R(t, X I ,  G/8) i t  is i n  Q(t ,x9  E l o  

ii) d ( Q ( t D x ' J ~ ) P  R ( t ,  x ) ) ~  3 e / h o  To show this one notes that  
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i i i )  Q(texo E )  is s t r i c t l y  convex, with smooth boundary having posi t ive 

Gaussian curvature, for each ( t , x )  

is Gauesian curvature a t  the point g( t ,x ,v  1 9 o o e q v  n-1 , 1)€ a R ( t , x , & ) ,  

Indeed of K(t,x,v 1 ,..., v n-1) 

ir) From the  aonstruction, g‘ ( t , x9v)  i e  ana ly t ic  in v f o r  fixed ( t , x )  

and continuous i n  ( t , x )  f o r  fixed vo 

Combining the r e s u l t s  of i) and i i )  shore that for ( t ,x)G o&, 

It rill next be shown that using gE ( t ,x ,v)  one can construct a mapping 

f E 
h ( t ,x ,v)  on ob- x Bn __B such t h a t  i f  R ( t , x , E )  = 

then R(t,x, € 1  is a s t r i c t l y  convex, compact s e t  containing R(t,x); 

d(R(t,x, ~ ) 9 R ( t , x , ) ) ~  e ; a R ( t , x , E )  is mooth w i t h  posit ive Gaussian 

curvature, and i f  n( t ,x ,h  ( t , x , v  9 D o o p v  ,1> is a unit normal t o  

a R ( t , x , E )  a t  h E ( t , x ,  v p o o o p v  

f 1 n-1 

1 n-1 , 1) then i t  is a C1 function of a l l  

arguments. 

For simplici ty  of natation l e t  y = ( t , x >  denote a point i n  

l e t  S (y-y) be a mol l i f ie r  function; see [7] 

and 

k As an example one could 

Extend g6 (ypv)  as the  zero function fo r  y i n  the complement of C& 

Sk(y-i) gc- ( y p v )  dy 
k Define h (y9v) = 

lP+l 
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k k 
Then fo r  every integer  k -0, h is an analy t ic  function, while h and its 

derivative6 with reepect t o  v tend uniformly t o  g" and its derivat ives  

with respect t o  V. 

k Let R ( t ,x ,  6 p, {hk(t  ,x,v) : v € Bn j . Since the Ctauesian curvature t o  

is given a6 a mul t i l i nea r  combination of the derivative8 d Q  ( t  ,x, E 

4 € v t ( t , x , ~  1 c..o,vn-l,l) while the curvature of 

same multi l inear combination of t h e  derivative8 hvr : t , x , V  , 

can choose k su f f i c i en t ly  la rge  so t h a t  dH ( t , x , € : >  has posi t ive 

Gaussian curvature w h i l e  R(t,x!C $C(t,x, €IC )'L(R(t,x), e ) -  

choice of k, define he ( t ,x ,v)  = h k ( t ,x ,v) ,  R( t , x ,€>  - = { hc ( t ,x , v) : v E 9) . 

R k ( t , x ,  € 1  is given by the 

k 1 
o ,  Vn'19 1) i O m  

k 

For such a 

From its construction, hc s a t i s f i e s  conclusions a ) ,  b) and c ) ,  w h i l e  a 

unit normal n(t ,x ,h  E. ( t9x9v19~009vn-191))  t o  a R ( t , x , € )  is a C 1 function 

1 n-1 e of ( t9X,  v 9 0 0 0 9 v  )e 

It remains t o  show par t  d ) ,  Using l e m m a  III,3 define r * ( t , x , p ; E )  as 

the unique point on h R ( t , x , € )  such that n ( t , x , r* ( t , x ,p ,€ ) )  = P / l P l  0 

w i l l  be shown that r* is a C1 function of t, x, and p by a proof similar 

t o  t h a t  of theorem 111e20 Defining v*(t ,x,p) as the unique Point o n a B n  

such that he ( t ,x ,v*( t ,x ,p) )  = r * ( t , ~ ~ p , ~ , )  i t  f d l o r s  that V* maximizes 

It 

H(t,x,p,v;G) and i t  rill be shorn that v* is a C' i n  t ,  x and p. 

For fixed ( t , x )  w e  have 

1 which natural ly  induces a map Q(t,x,v 9 o o o  qvn-l) from Sn'l - Sn-' de- 

fined by B(t,x,vlpo..,vn-l) z n(t,x,he ( t , x ,v  9 0 0 0 9 v  

only in te res ted  in a Bn = Sn-lq no confusion should occur i f  for the  re- 

mainder of this argument we le t  v = (v  1 , 

1 n-l ,l)).= Since w e  are 

,v n-1) e Sn-l and therefore  w r i t e  a 
Q(t,x,v). This rill be done. 
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O(t,x,v, E Q ( t ,  x, v.1 - $9 e We rill apply the implici t  function 

theorem t o  0 ,  which i e  eas i ly  Been t o  be a C 

toq xo, Po = po/IpoI there exists a unique point 

1 function. For each 

r 

the  unique point on 8-l such that he (tO,xo,vO) = ro, then 

= r L ( t o ,  xoq p o i € )  such tha t  if n( to ,  xo, ro) = po/lpoI and vo is 0 

G(tos xOq v 

and from the def in i t ion  of 8 (see also the proof of theorem 111.2) 

det  [ Q v ( t o q  xo* v,)] is the Gaussian curvature at ro 

which is posit ive.  

Po) - 0, One next notes that Gv(to,xo,vo, Po) = Q v ( ~ o , x o , ~ o ) v  
0’ 

a R  (t ,  x, E 

The impl ic i t  function theorem yie lds  the existence 

of a Ci function v ( t ,  x, (0) such that G ( t ,  x, v , ( t q  x, 0 i n  

a neighborhood of the  a rb i t r a ry  point t x woo Then 
r*(tq x, p; € 1 I h‘ ( t ,  x, v(t, x, @ p ) ) )  E C1, w h i l e  

0 ,  0’ 0 
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TBE BELATION OF TRAJECTORIES OF THE APPROXIMATING PROBLZX TO THOSE 
OF THE TIHE OPTIMAL PRO- 

0 
We a~sume the system (3-1) s a t i s f i e s  the F i l l ipov  existence conditions 

(3-3), (3-41, (3-5) and (3-61, with tl a time in which the  ta rge t  set S is 

at ta inable .  For any E 7 0 let h" ( t ,  x, v ) ,  YE. V ( e )  , be an e approximate 

equivalent problem (not necessarily having the speoial  properties shown t o  

e x i s t  i n  theorem 111.4). 

R( t, x, E ) 3 B ( t ,  x) , i t  readi ly  follows that f o r  every 

a t  least one measurable function v with values i n  V ( € )  such that the 

corresponding t ra jec tory  ( ; v) of the E approximate problem 

From condition (3-6) and the r e l a t ion  

* 0 there e x i s t s  

6 

a t t a i n s  the ta rge t  S. 

It w i l l  next be shorn that when dealing with the approximate problem, 

analysis  can again be r e s t r i c t ed  to a compact-set. 

h 6 ( t ,  x ,  v) can be wri t ten as f ( t ,  x, u) + d(t, x) where Id(t, x ) I c  

Then for  any t ra jec tory  x ( t )  of the approximate problem 

Indeed any vector 

a 

Define &' t o  be the compact region i n  F?l dimensional ( t , x )  space 

so that 1 x 1 ~  = ( I +  1x0l2) exp [ ~ ( c + E ) ( z  tl-to)] to= t 1 2  tl 

Theorem 111.5. Consider a sequence {€k] with Ek 7 0, ek -+ 0 
€ 1, n 

and l e t  $7 denote the time optimal t ra jec tory  (assurued t o  e x i s t )  for 

the Ek approximate problem. Then { Jk f is an equicontinous family on * 
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a the  i n t e r v a l  [to* tl ] 
which converges t o  a function @ having the following properties. 

It has a uniformly convergent subsequence 

i )  fo is absolutely continuous 

i i )  There e x i s t s  a measurable function u* with values i n  U 

such that 

There exists a amallest t* 2 to such that $(t*) E, S 

9 is a time optimal t ra jec tory  f o r  t he  system (3-1). 

O *  

(t) = f : t ,  JO’(t)( n* ( t ) )  almost everywhere. 

i i i )  

i v )  

Proof 

Without loss of generali ty,  assume t h a t  R(t,x, E1)IR(t ,x ,  c2) 2 o.rDR(trxI).  

We shall prove the conclusions i n  the order t ha t  they are s ta ted.  

Therefore ana lys i s  can b e  res t r ic ted  t o  the compact region Our first 

goal is t o  show tha t  there is a constant N independent of Ek such that 

g k  
I is  Lipschitz continuous wi thLiPscz tzcons tan t  No To accomplish this, 

f o r  a compact se t  R in l e t  (R) denote m a x  I r I For fixed f l ,  
re R P 

R(t,  x, E 

topology) on the  compact set  

is a continuous set valued function ( i n  the Hausdorff metric 1 
€1 

and therefore the  composite map 
“1 

(R(t ,  x, E 1) is a continuous rea l  valued function on ob , hence bounded. e 1 
‘k 

L e t  N be its bound. It follows t h a t  I h ( t ,  x, V > l  5 N for  all Ek 
‘k 

and any t ra jec tory  is Lfpschitz continuous with Lipschitz constant !I. 

Thue {G ’1 is equicontinuous and has a subsequence which converges 

uniformly t o  a Lipschitz continuous function p*e which is therefore - 

absolutely continuous. We w i l l  not dis t inguish between { G k { a n d  its 

convergent subsequence. 
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i i )  We next show that for  almost a l l  t €  [to, tl$ p ( t > €  R(t, p * ( t ) ) .  

Since the set  function R ( t ,  x) is continuous i n  the Hausdorff metric 

topology ( a  consequence of the continuity of f )  for any lJ * 0 l e t  

BL1 (t ,  x) be a closed convex 

i s  a l s o  a continuous set funct5on. 

2) - neighborhood of R(t, x). Then Rr) ( t ,  x) 

the Hausdorff metric topology, there exists and N such that fo r  a l l  

n 2 IQ, k C k ( t )  €Rd ( t ,  

now applies t o  show t ha t  

R(t, x) is closed and 

almost a l l  t. 

c21 p * ( t ) l 0  

for almost a l l  t, q * ( t )  € Rd ( t ,  p * ( t ) ) .  But 

F i l l ipov ' s  proof of theorem 1, 

a rb i t r a r i l y  small, hence q * ( t ) E  R ( t , y ( t ) )  fo r  

From the  lemma of Fil l ipov 121 , r e  then obtain the existence of a 

measurable control u* with values i n  U, such tha t  fo r  almost all 

0' 

i i i )  L e t  te > t  denote the optimal time fo r  the Ek approximate 
O h  k 

problem. Since R(t, x, El) 3 R ( t 9  X 9  E2) 3 0 0 0  i t  follows that 

Itc k] is a monotone non-drecreasing sequence of reals bounded above by 

tlo L e t  t* be its l i m i t .  Nor 9 (t,  )e S fo r  each k, and 'k 
k 

i ( t , x )  € S: to 5 t 5 tl i t3  compact i n  thus ) - #@*(t*)€ s. 
'k 

iv) Suppose $@ is not a time optimal t ra jectory for  the  system 

Then there e x i s t s  a measurable control u with values i n  U and (3-1)- 

corresponding t ra jectory p( ; u) such that Pto; u) = x 
O* 

p ( t j ;  u) 6 S and t < t*. This implies tha t  fo r  k suf f ic ien t ly  large,  
3 

t -= t 

problems. This contradicts the optimality of )o . 
; but p( - ; u) is an admissible t ra jectory t o  a l l  f approxlmate 

'k Ek 
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This theorem essent ia l ly  t e l b  us that  for suf f ic ien t ly  mall € , 
the optimal t ra jec tor ies  of the 

close t o  a0 optimal trajectory o f t h e  original problem. 

E approximate problem are uniformly 

In the next section the %moothness" which theorem 111.4 shows is 

possible for  the feedback aontrol of the 

be exploited t o  obtain solutions. 

e approximate problem, rill 

H s m i  lton-Jac obi Theory 

Let the time optimal problem for (3-1) sa t i s fy  the Fil l ipov existence 
0 

conditions. €. approximate system with 

the properties a ) ,  b), c)  and d ) ,  shown t o  ex i s t  i n  theorem 111.4. For 

the time optimal problem associated with the approximate problem w e  de- 

fine the functions 

Let x = h' ( t ,  x 9  v) denote an 

E 
H(t, X, pg V, e z p *  h (t9 X g  V) - 1 

H*(t, ~9 pp € E H(t9 X, P9 V*(tg X 9  P)r e 10 

The inequality 

is a consequence of the definit ion of v*. 

For the sake of completeness we repeat a short  argument of Kalman([l] 

pp. 321-3221 t o  show that f o r  fixed E P O ,  

e 
H;(t, X ,  pp 5 h ( t ,  x9 v*( t9  x9 PI). 

Indeed, w e  know that v * ( t p  x, p) E a Bn = sn-l 

re lat ion such that g(v) = 0 determines Sn-l in a neighborhood of v*( t ,  x, p). 

thus l e t  g(v) be a smooth 
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Noting that v* maximizes H(t, x, p, v, (5 1, we consider this maximization 

subject t o  the  constraint  v € S n-1 , i.e., g(v) E 0. 

rule implies HI + Vgv = 0 where rl # 0. 

plying on the  r igh t  by P ( t ,  x, p) and v*(t ,  x, p ) ,  i n  turn, gives the 

required resu l t .  

The Lagrange mul t ip l ie r  

Evaluting this a t  v* and multi- 

P 

If v', pe are solut ions,  respectively, t o  the boundary value problem 

with boundary data  x( to)  = xo, x(tl)  = xl, then (3-8) shows that 

€ E 
V*(tq p ( t ) ,  ( t ) )  satisfies the necessary condition termed the  maximum 

principle, for  being an optimal (open loop) CQntrOl for the  t i m e  optimal 

problem of a t t a in ing  the s t a t e  1 from the state xo for the  approximating 

system. 
1 

It should be noted that under the conditions assumed, v* 6 C and the 

i n i t i a l  value problem for the  equations (3-9), (3-10) with da ta  given a t  to 

rill have a unique solut ion i n  a neighborhood of toe 

this presents a ser ious d i f f i cu l ty  i n  the appl icat ion of the maximum principle.  

With the (Hamiltonian) function H*(tq x,  p9 E , 7 0 and fixed, w e  

I f  v* is discontinuous, 

assoc ia te  the HamiltonJacobi p a r t i a l  d i f f e r e n t i a l  equation 

Le t  the ta rge t  S be a tlsmootht' n-dimensional, non-characterist ic manifold 

i n  the (n+l)  dimensional ( t , x )  space, and prescribe the Cauchy data 

V(t,x) = 0, ( t , x )  E S. The solution, i n  the c l a s s i c a l  sense, of this partial 

d i f f e r e n t i a l  equation problem, we denote by V' ; the domain of solut ion by 

a A h  € , SI. 
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The charac te r i s t ic  equations associated with (3-11) are the 

equations (3-9) , (3-10)* If a point ( to ,  xo> is i n  ,& € , SI there  

exis ts  a point ( t l ,  x,) E S such that the  boundary value problem con- 

e i s t i n g  of the equation8 (3-91, (3-10) with boundary data  f o r  (3-10) 

being x( to)  = xo, x(t,) = 5, has a solution. 

boundary value problem, when i t  e x i ~ t s ,  w i l l  be denoted by 9 , $be. 

The solut ion of such a 
€ 

E E 
From the continuity condition, f o r  each E 7 0, Vx(t, $0 ( t ) )  e x i s t s  

and satisfies equation (3-10)0 (See for example 113 1. n u s  w e  can 
E € 

make the associat ion ( t )  3 Vx ( t ,  f ( t ) ) o  

Le t  A'( € , S) denote the set of points  ( toP xo)€ A( E, S) f o r  

which to= tl; ( t l ,  x ) being the point on S joined t o  (to, xo> by a 

curve 

1 

. Assume ( t o *  x ) €  h-( E ,  S). If we use the in i t ia l  da ta  
0 

x(to)  = x , p(to)  = Vx E ( t o *  xo); by v i r tue  of knowing a solut ion of the  
0 

partial d i f f e r e n t i a l  equation w e  have the proper init ial  data  t o  reduce 

the  previous two point boundary value problem f o r  (3-9) and (3-10) to  a n  

init ial  value problem. sa" w e  can 

consider the system 

Thus t o  determine the t ra jec tory  

E 
The major advantage of this method is that now 

I o e . 9  a feedback control. 

v* = v*(t ,  x, Vx ( t , x ) ) ,  

Theorem 111.6 (Kalman) Assume (tog x )E A"( E 
of the  Hamiltondacobi equation (3-11) and 

Then is a time optimal t ra jectory r e l a t i v e  t o  a l l  t r a j e c t o r i e s  

y( ; v) which connect ( t o 9  xo) t o  S and l i e  i n  &-( 

S); V" is the so lu t ion  

the solut ion of (3-l.2)0 

E 

SIo 
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Proof 

From t h e  def in i t ion  of H, H* and V 

Assume, without loss of general i ty ,  that ( to ,  x ) &S. 
0 - 

e , 

V:(t, x) hE( t ,  x, v) - 1 

Assume that te 

for a l l  V E B ~ ,  v + v+.  

E: 
( tC  * to) is the first time such tha t  ( t c  , )o (t, ) )  e S. 

L e t  R' denote the set  of measurable control  functions having values i n  Bn 

and leading t o  t r a j e c t o r i e s  of the 

(to9 xo) with a point on S and l i e  i n  &-(E, S) 

E: approximate problem yhich connect 

Then RE is not empty s ince 

x E A'( E, S) and YE a charac te r i s t ic  implies 
0 

p, p E ( t ) ) :  t 0 5 t , C t E  1 is i n  &-(e,  SI- If v*(t , (PE(t) ,  ~ ' ( t , j&t))  X 

is the only function (to within a set  of zero measure) i n  RE, the r e su l t  

is t r i v i a l l y  t rue,  

QE di f fe r ing  from v*( t ,  Fp ( t ) ,  v z ( t , Y ( t ) ) )  on a se t  Aof pos i t ive  

measure. 

system and t 

We must show t L t2' 

If this is not the case l e t  v = v ( t )  be any function i n  
€ 

L e t  v(- ; v) be the corresponding solut ion of the approximate 

(t2 7 to ) .  

a 
the  f i r s t  time such that ( t2 ,  p ( t 2 ;  v ) )  E: S. 

f 

Calculating 

2 

for  a l l  t and s t r i c t l y  less than zero f o r  t E A 
V (t29 p(t2; v)) - V ( t o ,  x0) 4 t2 - too But V ( t 2  JD(t2; = 0 

since (t2, p ( t 2 ;  v)) S, yielding -V ( t o ,  xo) 4 t2 - toe Similarly 

implying 
e € € 

E 

- too Combining the (t,y ( t ) )  - 1 z o implying - v ( to ,  xo) = tE d e  € e - v d t  

last two inequa l i t i e s  gives t <-  t 
€ 2 as w a s  t o  be sh0wn.m 
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TEE CONSTRUCTION OF APPROXIMATING PROBLXM WHEW THE COnTBoL APPEARS LINEARLY. 

Theorem 111.4 gives conditions f o r  the existence of an E equivalent 

approximate problem which has the  uni t  b a l l  Bn as the  set  of values which 

the control can assumeD However, the functional form of the  approximating 

system is allowed t o  vary with € . 
I n  thie sect ion w e  consider a system of the  form 

a ( t )  
2 C 

U, a compact convex set  i n  I!? with 1 r 5 n; H an nxr matrix valued 

function; w h i l e  g is a C2, n vector valued function. For such systems 

i t  is possible t o  provide a simple construction f o r  approximate problems. 

Since, f o r  the  approximate problem, one des i res  R(t ,  x,  € 1  t o  be s t r i c t l y  

convex and lemma 111.1 shows this implies non void i n t e r i o r ,  one is l ed  t o  

extend H t o  an nxn matrix valued function and approximate the  control  se t  by 

a compact set V(E) which contains U. Furthermore, V ( e )  should have a non- 

void n dimensional i n t e r i o r ,  a smooth boundary with posi t ive Gaussian curvature, 

and be such t h a t  i n  the Hausdorff metric topology, l i m  V(E = U, 
E-0  

The method of construction and the appl icat ion t o  approximating problems 

w i l l  be demonstrated i n  a two dimensional example; its generalization t o  

higher dimensions being immediate. 

Example 111.1 (Bushaw control  problem), 

Consider the  time optimal problem f o r  the system 

(3-14) = x 2  1 
e 

x = - x  
2 

with a rb i t r a ry  i n i t i a l  data x(0) = xo, and t a rge t  S = [ ( t ,  xl, x2): 

x = 0, x2 = 01- The control  u is t o  s a t i s f y  -1 2 u ( t )  1, i.e. , U = [-l.l]. 
1 
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As an e approximate problem re take the system a 
0 

(3-15) x1 = x2 + v1 

. 
1 + v2 x = -x 2 

with the same i n i t i a l  data and target ,  but with V(€ = [v€ I?: v1 2 + E 2 2  v2 5 e2] , 

i o e o ,  an e l l i p s e  with semi major axis 1 and semi minor axis e . Thus i n  the 

Hausdorff metric topology l i m  V( 6 = U, and b B ( t ,  x, € is smooth with 

€.+ 0 
pos i t ive  Gaussian curvature, From the  Hamilton-Jacobi theory 

Using l e m m a  111.3 one computes 

2 2 2  2 2  2 -% 
v*( t*  x9 P* i (E P1 [€ P1 +P;] 9 P2 [E. P1 + P2 

- 

from which i t  follows that 

-Y2 

H*(t, x, p9 6 s P1X2 - P2X1 + [P; €2 + PJ - 1. 

The associated Hamilton-Jacobi equation is 

% 
(3-16) Vt(t,x) + x2 V, ( t , x )  - x V ( t , x >  + [ €  2 2  V ( t , x >  + Vx 2 ( t , x ) ]  -1 = O n  

1 "2 1 2 X 

Since the  independent variables appear l i nea r ly ,  w h i l e  the dependent 

var iable  has derivatives which appear non-linearly, the Legesdre contact 

transformation is suggested. Let V(t,x) = W(t9p) - y -  x .  Then Vt = w t 9  

v =-p, wp = x and the transformed equation is 
X 

The charac te r i s t ic  equations associated with this l i n e a r  p a r t i a l  d i f f e r e n t i a l  0 
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which, after a s l i g h t  calculation, gives  

% 
I ( t ,pl ,p2;s  , % I  = t-'6+6+ s i n T +  p 1 ~ ~ s ~ ) 2 + ( p 2 c o ~ ~ - p 1 s i n ~ ) 2 ]  d t .  

For a time optimal problem with autonomous system equations and ta rge t  a 

a point i n  s t a t e  space, the constant 5 is inconsequential. 

s = 0 and omit fur ther  reference t o  it. 

We consider 

By vi r tue  of the transformation, solut ion t r a j e c t o r i e s  t o  the system 

(3-15) with v = v + ( t ,  x, p) are given by x ( t ; d , / ,  8 )  = Wp(t,p(t; <,a>;'d> 
or  spec i f ica l ly  

(3- t) 
d e 2  sin(2 r + / ) c o s r -  &os ( ~ T + P )  s i n T  

[e2d2  sin2 (zT+/> + d2 cos2 (2 T 9) ] 
xl(t; 48, 1 =J d?- 

0 

These formulas can be interpreted as follows, 

[x(O; d,P 0): ( d , /  ) E 8 f gives the  set  of in i t ia l  points  xo from 

which the origin can be reached i n  time 3 by t r a j e c t o r i e s  which s a t i s f y  

(3-15) with v = v + ( t P  x, p)* 

of homogeneous contact transformations) that the jacobian determinant 

If w e  choose % 7 0 and t = 0, 

In par t icu lar ,  i t  can be shown (v i a  the  theory 
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a (x, x2) 

3 (oc */I 
is zero, and i n  this case the s e t  of in i t ia l  points forms 

a closed curve in I$ for each% > 0. 

To generate a f i e l d  of extremals ( i t  is t o  be cautioned that the term 

extremal i s  t o  be taken i n  the sense of the c lass ica l  calculus of variations;  

i.e., not necessarily t o  infer  opt ieal i ty)  choose $=  0 and replace t with -t 

i n  (3-17). 

the or igin a t  t i m e  zero. 

For each choice of d,/ one obtains an extremal which is at  

Varying &,,& now gives a f i e ld  of extremals. 
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